
Control System Toolbox™

User's Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ User's Guide
© COPYRIGHT 2001–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2001 Online only New for Version 5.1 (Release 12.1)
July 2002 Online only Revised for Version 5.2 (Release 13)
June 2004 Online only Revised for Version 6.0 (Release 14)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.0 (Release 2006a)
September 2006 Online only Revised for Version 7.1 (Release 2006b)
March 2007 Online only Revised for Version 8.0 (Release 2007a)
September 2007 Online only Revised for Version 8.0.1 (Release 2007b)
March 2008 Online only Revised for Version 8.1 (Release 2008a)
October 2008 Online only Revised for Version 8.2 (Release 2008b)
March 2009 Online only Revised for Version 8.3 (Release 2009a)
September 2009 Online only Revised for Version 8.4 (Release 2009b)
March 2010 Online only Revised for Version 8.5 (Release 2010a)
September 2010 Online only Revised for Version 9.0 (Release 2010b)
April 2011 Online only Revised for Version 9.1 (Release 2011a)
September 2011 Online only Revised for Version 9.2 (Release 2011b)
March 2012 Online only Revised for Version 9.3 (Release 2012a)
September 2012 Online only Revised for Version 9.4 (Release 2012b)
March 2013 Online only Revised for Version 9.5 (Release 2013a)
September 2013 Online only Revised for Version 9.6 (Release 2013b)
March 2014 Online only Revised for Version 9.7 (Release 2014a)
October 2014 Online only Revised for Version 9.8 (Release 2014b)
March 2015 Online only Revised for Version 9.9 (Release 2015a)

v

Contents

Linear System Modeling

Linear System Model Objects
1

What Are Model Objects? . 1-2
Model Objects Represent Linear Systems 1-2
About Model Data . 1-2

Control System Modeling with Model Objects 1-4

Types of Model Objects . 1-7

Dynamic System Models . 1-9

Static Models . 1-11

Numeric Models . 1-12
Numeric Linear Time Invariant (LTI) Models 1-12
Identified LTI Models . 1-12
Identified Nonlinear Models . 1-13

Generalized Models . 1-14
Generalized and Uncertain LTI Models 1-14
Control Design Blocks . 1-14
Generalized Matrices . 1-16

Models with Fixed Coefficients 1-17
Numeric LTI Models . 1-17
Transfer Functions . 1-18
State-Space Models . 1-19
Frequency Response Data (FRD) Models 1-21

vi Contents

PID Controllers . 1-22

Models with Tunable Coefficients 1-25
Tunable Generalized LTI Models 1-25
Modeling Tunable Components 1-25
Modeling Control Systems with Tunable Components . 1-26
Internal Structure of Generalized Models 1-26

Using Model Objects . 1-29

Simulink Block for LTI Systems 1-30

References . 1-32

Model Creation
2

SISO Model Creation . 2-2
Transfer Function Model Using Numerator and

Denominator Coefficients . 2-2
Transfer Function Model Using Zeros, Poles, and Gain . 2-3
State-Space Model . 2-3
Frequency-Response Model . 2-5
Proportional-Integral-Derivative (PID) Controller 2-6

Discrete-Time Model Creation . 2-9
Discrete-Time Transfer Function Model 2-9
Discrete-Time Proportional-Integral-Derivative (PID)

Controller . 2-10

MIMO Model Creation . 2-12
MIMO Transfer Function Model 2-12
MIMO State-Space Model . 2-13
MIMO Descriptor State-Space Model 2-14
MIMO Frequency Response Data Model 2-16
Select Input/Output Pairs in MIMO Models 2-17

Models with Time Delays . 2-19
Modeling Time Delays . 2-19
First Order Plus Dead Time Model 2-19

vii

Input and Output Delay in State-Space Model 2-21
Transport Delay in MIMO Transfer Function 2-22
Closing Feedback Loops with Time Delays 2-23
Discrete-Time Transfer Function with Time Delay . . . 2-26
Time-Delay Approximation . 2-26
Time-Delay Approximation in Continuous-Time Open-

Loop Model . 2-27
Time-Delay Approximation in Continuous-Time Closed-

Loop Model . 2-32
Approximate Different Delays with Different

Approximation Orders . 2-36
Convert Time Delay in Discrete-Time Model to Factors of

1/z . 2-38
Fractional Time-Delay Approximation in Discrete-Time

Model . 2-42
Frequency Response Data (FRD) Model with Time

Delay . 2-43
Internal Delays . 2-46

Tunable Low-Pass Filter . 2-51

Tunable Second-Order Filter . 2-52

State-Space Model with Both Fixed and Tunable
Parameters . 2-54

Control System with Tunable Components 2-56

Control System with Multichannel Analysis Points . . 2-58

Marking Signals of Interest for Control System Analysis
and Design . 2-62

Analysis Points . 2-62
Specifying Analysis Points for MATLAB Models 2-64
Specifying Analysis Points for Simulink Models 2-64
Referring to Analysis Points for Analysis and Tuning . 2-67

Model Arrays . 2-70
What Are Model Arrays? . 2-70
Uses of Model Arrays . 2-70
Visualizing Model Arrays . 2-71
Visualizing Selection of Models From Model Arrays . . . 2-71

viii Contents

Model Array with Single Parameter Variation 2-73

Select Models from Array . 2-76

Model Array with Variations in Two Parameters 2-79

Study Parameter Variation by Sampling Tunable
Model . 2-82

Linear Parameter-Varying Models 2-85
What are Linear Parameter-Varying Models? 2-85
Regular vs. Irregular Grids . 2-88
Use Model Arrays to Create Linear Parameter-Varying

Models . 2-90
Approximate Nonlinear Systems using LPV Models . . 2-90
Applications of Linear Parameter-Varying Models 2-91

Using LTI Arrays for Simulating Multi-Mode
Dynamics . 2-93

Working with Linear Models

Data Manipulation
3

Model Properties . 3-2
Model Properties . 3-2
Specify Model Properties at Model Creation 3-2
Examine and Specify Properties of an Existing Model . . 3-2

Extract Model Coefficients . 3-5
Functions for Extracting Model Coefficients 3-5
Extracting Coefficients of Different Model Type 3-5
Extract Numeric Model Data and Time Delay 3-6
Extract PID Gains from Transfer Function 3-7

ix

Attach Metadata to Models . 3-8
Specify Model Time Units . 3-8
Interconnect Models with Different Time Units 3-8
Specify Frequency Units of Frequency-Response Data

Model . 3-9
Extract Subsystems of Multi-Input, Multi-Output (MIMO)

Models . 3-10
Specify and Select Input and Output Groups 3-11

Query Model Characteristics . 3-13
Query Model Dynamics . 3-13
Query Array Size . 3-14

Customize Model Display . 3-16
Configure Transfer Function Display Variable 3-16
Configure Display Format of Transfer Function in

Factorized Form . 3-17

Model Interconnections
4

Why Interconnect Models? . 4-2

Catalog of Model Interconnections 4-3
Model Interconnection Commands 4-3
Arithmetic Operations . 4-4

Numeric Model of SISO Feedback Loop 4-6

Tunable Model of SISO Feedback Loop 4-8

Multi-Loop Control System . 4-10

Mark Analysis Points in Closed-Loop Models 4-13

MIMO Control System . 4-19

MIMO Feedback Loop . 4-22

x Contents

How the Software Determines Properties of Connected
Models . 4-26

Rules That Determine Model Type 4-27

Recommended Model Type for Building Block
Diagrams . 4-29

Model Transformation
5

Conversion Between Model Types 5-2
Explicit Conversion Between Model Types 5-2
Automatic Conversion Between Model Types 5-2
Recommended Working Representation 5-3
Convert PID Controller to Transfer Function 5-3
Get Current Value of Generalized Model by Model

Conversion . 5-4

Discretize a Compensator . 5-6

Improve Accuracy of Discretized System with Time
Delay . 5-12

Convert Discrete-Time System to Continuous Time . . 5-16

Continuous-Discrete Conversion Methods 5-19
Choosing a Conversion Method 5-19
Zero-Order Hold . 5-20
First-Order Hold . 5-21
Impulse-Invariant Mapping . 5-22
Tustin Approximation . 5-23
Zero-Pole Matching Equivalents 5-27

Upsample a Discrete-Time System 5-29

Choosing a Resampling Command 5-32

Why Simplify Models? . 5-33

xi

Cancellation Versus Approximation 5-34

Approximate Model with Lower-Order Model 5-36

Choose a Low-Order Approximation Method 5-41

Approximate Model with Unstable or Near-Unstable
Pole . 5-46

Eliminate States by Pole-Zero Cancellation 5-50

Linear Analysis

Time Domain Analysis
6

Choosing a Time-Domain Analysis Command 6-2

Time-Domain Response Data and Plots 6-3

System Characteristics on Response Plots 6-6

Numeric Values of Time-Domain System
Characteristics . 6-10

Time-Domain Responses of Discrete-Time Model 6-12

Time-Domain Responses of MIMO Model 6-14

Time-Domain Responses of Multiple Models 6-16

Joint Time- and Frequency-Domain Analysis 6-20

Response from Initial Conditions 6-25

xii Contents

Analysis of Systems with Time Delays 6-28
Considerations to Keep in Mind when Analyzing Systems

with Internal Time Delays 6-31

Frequency Domain Analysis
7

Choosing a Frequency-Domain Analysis Command . . . 7-2

Frequency Response of a SISO System 7-4

Frequency Response of a MIMO System 7-6

System Characteristics on Response Plots 7-10

Numeric Values of Frequency-Domain Characteristics of
SISO Model . 7-13

Pole and Zero Locations . 7-16

Assessing Gain and Phase Margins 7-19

Analyzing Control Systems with Delays 7-33

Analyzing the Response of an RLC Circuit 7-49

Sensitivity Analysis
8

Model Array with Single Parameter Variation 8-2

Model Array with Variations in Two Parameters 8-5

Study Parameter Variation by Sampling Tunable
Model . 8-8

xiii

Sensitivity of Control System to Time Delays 8-11

Control Design

PID Controller Design
9

PID Controller Design at the Command Line 9-2

Designing Cascade Control System with PI
Controllers . 9-9

Single-Input, Single-Output Control Design
10

Getting Started with the SISO Design Tool 10-2

Customization

Preliminaries
11

Terminology . 11-2

Property and Preferences Hierarchy 11-3

Ways to Customize Plots . 11-5

xiv Contents

Setting Toolbox Preferences
12

Toolbox Preferences Editor . 12-2
Overview of the Toolbox Preferences Editor 12-2
Opening the Toolbox Preferences Editor 12-2

Units Pane . 12-4

Style Pane . 12-7

Options Pane . 12-8

SISO Tool Pane . 12-9

Setting Tool Preferences
13

Linear System Analyzer Preferences Editor 13-2
Opening the Linear System Analyzer Preference

Editor . 13-2
Units Pane . 13-3
Style Pane . 13-5
Options Pane . 13-6
Parameters Pane . 13-7

Graphical Tuning Window Preferences Editor 13-9
Opening the Graphical Tuning Window Preferences

Editor . 13-9
Units Pane . 13-10
Time Delays Pane . 13-11
Style Pane . 13-12
Options Pane . 13-14
Line Colors Pane . 13-16

xv

Customizing Response Plot Properties
14

Introduction . 14-2

Customizing Response Plots Using the Response Plots
Property Editor . 14-3

Opening the Property Editor . 14-3
Overview of Response Plots Property Editor 14-4
Labels Pane . 14-6
Limits Pane . 14-6
Units Pane . 14-7
Style Pane . 14-14
Options Pane . 14-15
Editing Subplots Using the Property Editor 14-17

Customizing Response Plots Using Plot Tools 14-18
Properties You Can Customize Using Plot Tools 14-18
Opening and Working with Plot Tools 14-19
Example of Changing Line Color Using Plot Tools . . . 14-19

Customizing Response Plots from the Command Line 14-22
Overview of Customizing Plots from the Command

Line . 14-22
Obtaining Plot Handles . 14-25
Obtaining Plot Options Handles 14-26
Examples of Customizing Plots from the Command

Line . 14-28
Properties and Values Reference 14-32
Property Organization Reference 14-43

Customizing Plots Inside the SISO Design Tool 14-44
Overview of Customizing SISO Design Tool Plots . . . 14-44
Root Locus Property Editor . 14-44
Open-Loop Bode Property Editor 14-48
Open-Loop Nichols Property Editor 14-51
Prefilter Bode Property Editor 14-52

Build GUI With Interactive Plot Updates 14-54

xvi Contents

Design Case Studies
15

Design Yaw Damper for Jet Transport 15-2
Overview of this Case Study . 15-2
Creating the Jet Model . 15-2
Computing Open-Loop Poles . 15-3
Open-Loop Analysis . 15-4
Root Locus Design . 15-8
Washout Filter Design . 15-13

Hard-Disk Read/Write Head Controller 15-19
Overview of this Case Study . 15-19
Creating the Read/Write Head Model 15-19
Model Discretization . 15-20
Adding a Compensator Gain . 15-22
Adding a Lead Network . 15-23
Design Analysis . 15-26

LQG Regulation: Rolling Mill Case Study 15-30
Overview of this Case Study . 15-30
Process and Disturbance Models . 15-30
LQG Design for the x-Axis . 15-33
LQG Design for the y-Axis . 15-39
Cross-Coupling Between Axes . 15-41
MIMO LQG Design . 15-44

Kalman Filtering . 15-48

Reliable Computations
16

Scaling State-Space Models . 16-2
Why Scaling Is Important . 16-2
When to Scale Your Model . 16-2
Manually Scaling Your Model . 16-3

xvii

Using the SISO Design Tool and the Linear System Analyzer

SISO Design Tool
17

SISO Design Tool Overview . 17-2

Opening the SISO Design Tool . 17-3

Using the SISO Design Task Node 17-4
The SISO Design Task Node . 17-4
SISO Design Task Node Menu Bar 17-4

Using the SISO Design Task in the Controls &
Estimation Tools Manager . 17-11

Architecture . 17-11
Compensator Editor . 17-18
Graphical Tuning . 17-19
Analysis Plots . 17-22
Automated Tuning . 17-24

SISO Design Task Graphical Tuning Window 17-40

Using the Graphical Tuning Window Menu Bar 17-42
Overview of the Graphical Tuning Window Menu Bar 17-42
File . 17-42
Edit . 17-45
View . 17-45
Analysis . 17-46
Tools . 17-47
Window . 17-51
Help . 17-51

Using the Graphical Tuning Window Toolbar 17-53

Using the Right-Click Menus in the Graphical Tuning
Window . 17-54

Overview of the Right-Click Menus 17-54
Add Pole/Zero . 17-55
Delete Pole/Zero . 17-58

xviii Contents

Edit Compensator . 17-58
Gain Target . 17-58
Show . 17-58
Multimodel Display . 17-59
Design Requirements . 17-59
Grid . 17-71
Full View . 17-71
Properties . 17-71
Select Compensator . 17-72
Status Pane . 17-72

Linear System Analyzer for SISO Design Task Design
Requirements . 17-73

Overview of Linear System Analyzer Design
Requirements . 17-73

Available Design Requirements in the Linear System
Analyzer . 17-73

Example: Time Domain Requirement 17-74

Linear System Analyzer
18

Linear System Analyzer Overview 18-2

Using the Right-Click Menu in the Linear System
Analyzer . 18-4

Overview of the Right-Click Menu 18-4
Setting Characteristics of Response Plots 18-4
Adding Design Requirements 18-8

Importing, Exporting, and Deleting Models in the Linear
System Analyzer . 18-12

Importing Models . 18-12
Exporting Models . 18-13
Deleting Models . 18-13

Selecting Response Types . 18-15
Methods for Selecting Response Types 18-15
Right Click Menu: Plot Type 18-15
Plot Configurations Window 18-15

xix

Line Styles Editor . 18-17

Analyzing MIMO Models . 18-20
Overview of Analyzing MIMO Models 18-20
Array Selector . 18-21
I/O Grouping for MIMO Models 18-23
Selecting I/O Pairs . 18-24

Customizing the Linear System Analyzer 18-26
Overview of Customizing the Linear System Analyzer 18-26
Linear System Analyzer Preferences Editor 18-26

Linear System Modeling

1

Linear System Model Objects

• “What Are Model Objects?” on page 1-2
• “Control System Modeling with Model Objects” on page 1-4
• “Types of Model Objects” on page 1-7
• “Dynamic System Models” on page 1-9
• “Static Models” on page 1-11
• “Numeric Models” on page 1-12
• “Generalized Models” on page 1-14
• “Models with Fixed Coefficients” on page 1-17
• “Models with Tunable Coefficients” on page 1-25
• “Using Model Objects” on page 1-29
• “Simulink Block for LTI Systems” on page 1-30
• “References” on page 1-32

1 Linear System Model Objects

1-2

What Are Model Objects?

In this section...

“Model Objects Represent Linear Systems” on page 1-2
“About Model Data” on page 1-2

Model Objects Represent Linear Systems

In Control System Toolbox™, System Identification Toolbox™, and Robust Control
Toolbox™ software, you represent linear systems as model objects. In System
Identification Toolbox, you also represent nonlinear models as model objects. Model
objects are specialized data containers that encapsulate model data and other attributes
in a structured way. Model objects allow you to manipulate linear systems as single
entities rather than keeping track of multiple data vectors, matrices, or cell arrays.

Model objects can represent single-input, single-output (SISO) systems or multiple-input,
multiple-output (MIMO) systems. You can represent both continuous- and discrete-time
linear systems.

The main families of model objects are:

• Numeric Models — Basic representation of linear systems with fixed numerical
coefficients. This family also includes identified models that have coefficients
estimated with System Identification Toolbox software.

• Generalized Models — Representations that combine numeric coefficients
with tunable or uncertain coefficients. Generalized models support tasks such as
parameter studies or compensator tuning using Robust Control Toolbox tuning
commands.

About Model Data

The data encapsulated in your model object depends on the model type you use. For
example:

• Transfer functions store the numerator and denominator coefficients
• State-space models store the A, B, C, and D matrices that describe the dynamics of

the system
• PID controller models store the proportional, integral, and derivative gains

 What Are Model Objects?

1-3

Other model attributes stored as model data include time units, names for the model
inputs or outputs, and time delays. For more information about setting and retrieving
model attributes, see “Model Attributes”.

Note: All model objects are MATLAB® objects, but working with them does not require
a background in object-oriented programming. To learn more about objects and object
syntax, see “Classes in the MATLAB Language” in the MATLAB documentation.

More About
• “Control System Modeling with Model Objects” on page 1-4
• “Types of Model Objects” on page 1-7

1 Linear System Model Objects

1-4

Control System Modeling with Model Objects

Model objects can represent individual components of a control architecture, such as the
plant, actuators, sensors, or controllers. You can connect model objects to build aggregate
models of block diagrams that represent the combined response of multiple elements.

For example, the following control system contains a prefilter F, a plant G, and
a controller C, arranged in a single-loop configuration. The model also includes a
representation of sensor dynamics, S.

You can represent each of the components as a model object. You do not need to use the
same type of model object for each component. For example, represent the plant G as a
zero-pole-gain (zpk) model with a double pole at s = -1; C as a PID controller, and F and
S as transfer functions:

G = zpk([],[-1,-1],1);

C = pid(2,1.3,0.3,0.5);

S = tf(5,[1 4]);

F = tf(1,[1 1]);

You can then combine these elements build models that represent your control system or
the control system as a whole. For example, create the open-loop response SGC:

open_loop = S*G*C;

To build a model of the unfiltered closed-loop response, use the feedback command:

T = feedback(G*C,S);

To model the entire closed-loop system response from r to y, combine T with the filter
transfer function:

Try = T*F;

 Control System Modeling with Model Objects

1-5

The results open_loop, T, and Try are also linear model objects. You can operate
on them with Control System Toolbox™ control design and analysis commands. For
example, plot the step response of the entire system:

stepplot(Try)

When you combine Numeric LTI models, the resulting Numeric LTI model represents
the aggregate system. The resulting model does not retain the original data from the
combined components. For example, T does not separately keep track of the dynamics of
the components G, C, and S that are combined to create T.

See Also
feedback

1 Linear System Model Objects

1-6

Related Examples
• “Numeric Model of SISO Feedback Loop”
• “Multi-Loop Control System”
• “MIMO Control System”

More About
• “Types of Model Objects” on page 1-7

 Types of Model Objects

1-7

Types of Model Objects

The following diagram illustrates the relationships between the types of model objects
in Control System Toolbox, Robust Control Toolbox, and System Identification Toolbox
software. Model types that begin with id require System Identification Toolbox software.
Model types that begin with u require Robust Control Toolbox software. All other model
types are available with Control System Toolbox software.

Analysis Point Block

AnalysisPoint

The diagram illustrates the following two overlapping broad classifications of model
object types:

1 Linear System Model Objects

1-8

• Dynamic System Models vs. Static Models — In general, Dynamic System Models
represent systems that have internal dynamics, while Static Models represent static
input/output relationships.

• Numeric Models vs. Generalized Models — Numeric Models are the basic
numeric representation of linear systems with fixed coefficients. Generalized Models
represent systems with tunable or uncertain components.

More About
• “What Are Model Objects?” on page 1-2
• “Dynamic System Models” on page 1-9
• “Static Models” on page 1-11
• “Numeric Models” on page 1-12
• “Generalized Models” on page 1-14

 Dynamic System Models

1-9

Dynamic System Models

Dynamic System Models generally represent systems that have internal dynamics or
memory of past states (such as integrators).

Most commands for analyzing linear systems, such as bode, margin, and
linearSystemAnalyzer, work on most Dynamic System Model objects. For
Generalized Models, analysis commands use the current value of tunable parameters and
the nominal value of uncertain parameters.

The following table lists the Dynamic System Models.

Model Family Model Types

tf

zpk

ss

frd

pid

Numeric LTI models — Basic numeric
representation of linear systems

pidstd

idtf

idss

idfrd

idgrey

idpoly

Identified LTI models — Representations
of linear systems with tunable coefficients,
whose values can be identified using
measured input/output data.

idproc

idnlarx

idnlhw

Identified nonlinear models —
Representations of nonlinear systems with
tunable coefficients, whose values can be
identified using input/output data. Limited
support for commands that analyze linear
systems.

idnlgrey

genss

genfrd

Generalized LTI models — Representations
of systems that include tunable or
uncertain coefficients

uss

1 Linear System Model Objects

1-10

Model Family Model Types

ufrd

ltiblock.gain

ltiblock.tf

ltiblock.ss

ltiblock.pid

ltiblock.pid2

ultidyn

udyn

Dynamic Control Design Blocks —
Tunable, uncertain, or switch components
for constructing models of control systems

AnalysisPoint

More About
• “Numeric Linear Time Invariant (LTI) Models” on page 1-12
• “Identified LTI Models” on page 1-12
• “Identified Nonlinear Models” on page 1-13
• “Generalized and Uncertain LTI Models” on page 1-14
• “Control Design Blocks” on page 1-14

 Static Models

1-11

Static Models

Static Models represent static input/output relationships and generalize the notions of
matrix and numeric array to parametric or uncertain arrays. You can use static models
to create parametric or uncertain expressions, and to construct Generalized LTI models
whose coefficients are parametric or uncertain expressions. The Static Models family
includes:

• Tunable parameters (realp objects)
• Generalized matrices (genmat objects)
• Uncertain parameters and matrices (ureal, ucomplex, ucomplexm) (requires Robust

Control Toolbox software)
• Uncertain matrices (umat) objects (requires Robust Control Toolbox software)

For more information about using these objects to create parametric models, see “Models
with Tunable Coefficients” on page 1-25. For information about creating uncertain
static models, see “Uncertain Real Parameters” and “Uncertain Matrices” in the Robust
Control Toolbox documentation.

1 Linear System Model Objects

1-12

Numeric Models

Numeric Linear Time Invariant (LTI) Models

Numeric LTI models are the basic numeric representation of linear systems or
components of linear systems. Use numeric LTI models for modeling dynamic
components, such as transfer functions or state-space models, whose coefficients are
fixed, numeric values. You can use numeric LTI models for linear analysis or control
design tasks.

The following table summarizes the available types of numeric LTI models.

Model Type Description

tf Transfer function model in polynomial form
zpk Transfer function model in zero-pole-gain (factorized) form
ss State-space model
frd Frequency response data model
pid Parallel-form PID controller
pidstd Standard-form PID controller

Identified LTI Models

Identified LTI Models represent linear systems with coefficients that are identified using
measured input/output data (requires System Identification Toolbox software). You can
specify initial values and constraints for the estimation of the coefficients.

The following table summarizes the available types of identified LTI models.

Model Type Description

idtf Transfer function model in polynomial form, with
identifiable parameters

idss State-space model, with identifiable parameters
idpoly Polynomial input-output model, with identifiable

parameters

 Numeric Models

1-13

Model Type Description

idproc Continuous-time process model, with identifiable
parameters

idfrd Frequency-response model, with identifiable parameters
idgrey Linear ODE (grey-box) model, with identifiable parameters

Identified Nonlinear Models

Identified Nonlinear Models represent nonlinear systems with coefficients that are
identified using measured input/output data (requires System Identification Toolbox
software). You can specify initial values and constraints for the estimation of the
coefficients.

The following table summarizes the available types of identified nonlinear models.

Model Type Description

idnlarx Nonlinear ARX model, with identifiable
parameters

idnlgrey Nonlinear ODE (grey-box) model, with
identifiable parameters

idnlhw Hammerstein-Wiener model, with
identifiable parameters

More About
• “Models with Fixed Coefficients” on page 1-17

1 Linear System Model Objects

1-14

Generalized Models

Generalized and Uncertain LTI Models

Generalized LTI Models represent systems having a mixture of fixed coefficients and
tunable or uncertain coefficients. Generalized LTI models arise from combining numeric
LTI models with Control Design Blocks. For more information about tunable Generalized
LTI models and their applications, see “Models with Tunable Coefficients” on page
1-25.

Uncertain LTI Models are a special type of Generalized LTI model that include uncertain
coefficients but not tunable coefficients. For more information about using uncertain
models, see “Uncertain State-Space Models (uss)” and “Create Uncertain Frequency
Response Data Models” in the Robust Control Toolbox documentation.

Family Model Type Description

genss Generalized LTI model arising from
combination of Numeric LTI models (except
frd models) with Control Design Blocks

Generalized LTI
Models

genfrd Generalized LTI model arising from
combination frd models with Control
Design Blocks

uss Generalized LTI model arising from
combination of Numeric LTI models (except
frd models) with uncertain Control Design
Blocks

Uncertain LTI
Models (requires
Robust Control
Toolbox software)

ufrd Generalized LTI model arising from
combination frd models with uncertain
Control Design Blocks

Control Design Blocks

Control Design Blocks are building blocks for constructing tunable or uncertain models
of control systems. Combine tunable Control Design Blocks with numeric arrays or
Numeric LTI models to create Generalized Matrices or Generalized LTI models that
include both fixed and tunable components.

 Generalized Models

1-15

Tunable Control Design Blocks include tunable parameter objects as well as tunable
linear models with predefined structure. For more information about using tunable
Control Design Blocks, see “Models with Tunable Coefficients” on page 1-25.

If you have Robust Control Toolbox software, you can use uncertain Control Design
Blocks to model uncertain parameters or uncertain system dynamics. For more
information about using uncertain blocks, see “Uncertain LTI Dynamics Elements”,
“Uncertain Real Parameters”, and “Uncertain Complex Parameters and Matrices” in the
Robust Control Toolbox documentation.

The following tables summarize the available types of Control Design Blocks.

Dynamic System Model Control Design Blocks

Family Model Type Description

ltiblock.gain Tunable gain block
ltiblock.tf SISO fixed-order transfer

function with tunable
coefficients

ltiblock.ss Fixed-order state-space
model with tunable
coefficients

ltiblock.pid One-degree-of-freedom PID
controller with tunable
coefficients

Tunable Linear
Components

ltiblock.pid2 Two-degree-of-freedom PID
controller with tunable
coefficients

ultidyn Uncertain linear time-
invariant dynamics

Uncertain Dynamics
(requires Robust Control
Toolbox software) udyn Unstructured uncertain

dynamics
Analysis Point Block AnalysisPoint Points of interest for linear

analysis or control system
tuning

Static Model Control Design Blocks

1 Linear System Model Objects

1-16

Family Model Type Description

Tunable Parameter realp Tunable scalar parameter or
matrix

ureal Uncertain real scalar
ucomplex Uncertain complex scalar

Uncertain Parameters
(requires Robust Control
Toolbox software)

ucomplexm Uncertain complex matrix

Generalized Matrices

Generalized Matrices extend the notion of numeric matrices to matrices that include
tunable or uncertain values.

Create tunable generalized matrices by building rational expressions involving realp
parameters. You can use generalized matrices as inputs to tf or ss to create tunable
linear models with structures other than the predefined structures of the Control Design
Blocks. Use such models for parameter studies or some compensator tuning tasks.

If you have Robust Control Toolbox software, you can create uncertain matrices
by building rational expressions involving uncertain parameters such as ureal or
ucomplex.

Model Type Description

genmat Generalized matrix that includes parametric or tunable
entries

umat (requires Robust
Control Toolbox software)

Generalized matrix that includes uncertain entries

For more information about generalized matrices and their applications, see “Models
with Tunable Coefficients” on page 1-25.

 Models with Fixed Coefficients

1-17

Models with Fixed Coefficients

In this section...

“Numeric LTI Models” on page 1-17
“Transfer Functions” on page 1-18
“State-Space Models” on page 1-19
“Frequency Response Data (FRD) Models” on page 1-21
“PID Controllers” on page 1-22

Numeric LTI Models

Numeric LTI models are the basic representation of linear systems or components of
linear systems whose coefficients are fixed numeric values.

Applications of Numeric LTI Models

You can use Numeric LTI models to represent block diagram components such as plant
or sensor dynamics. By connecting Numeric LTI models together, you can derive Numeric
LTI models of block diagrams. Use Numeric LTI models for most modeling, analysis, and
control design tasks, including:

• Analyzing linear system dynamics using analysis commands such as bode, step, or
impulse.

• Designing controllers for linear systems using “SISO Design Tool” or the PID Tuner
GUI.

• Designing controllers using control design commands such as pidtune, rlocus, or
lqr/lqg.

Types of Numeric LTI Models

Control System Toolbox includes the following types of numeric LTI models:

• “Transfer Functions” on page 1-18
• “State-Space Models” on page 1-19
• “Frequency Response Data (FRD) Models” on page 1-21

1 Linear System Model Objects

1-18

• “PID Controllers” on page 1-22

Transfer Functions

• “Transfer Function Representations” on page 1-18
• “Commands for Creating Transfer Functions” on page 1-19

Transfer Function Representations

Control System Toolbox software supports transfer functions that are continuous-time
or discrete-time, and SISO or MIMO. You can also have time delays in your transfer
function representation.

A SISO transfer function is expressed as the ratio:

G s
N s

D s
() =

()

()
,

of polynomials N(s) and D(s), called the numerator and denominator polynomials,
respectively.

You can represent linear systems as transfer functions in polynomial or factorized (zero-
pole-gain) form. For example, the polynomial-form transfer function:

G s
s s

s s
() =

- -

+ +

2

2

3 4

5 6

can be rewritten in factorized form as:

G s
s s

s s
() =

+() -()

+() +()

1 4

2 3
.

The tf model object represents transfer functions in polynomial form. The zpk model
object represents transfer functions in factorized form.

MIMO transfer functions are arrays of SISO transfer functions. For example:

 Models with Fixed Coefficients

1-19

G s

s

s

s

s

() =

-

+
+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

3

4

1

2

is a one-input, two output transfer function.

Commands for Creating Transfer Functions

Use the commands described in the following table to create transfer functions.

Command Description

tf Create tf objects representing continuous-time or discrete-
time transfer functions in polynomial form.

zpk Create zpk objects representing continuous-time or discrete-
time transfer functions in zero-pole-gain (factorized) form.

filt Create tf objects representing discrete-time transfer
functions using digital signal processing (DSP) convention.

State-Space Models

• “State-Space Model Representations” on page 1-19
• “Explicit State-Space Models” on page 1-20
• “Descriptor (Implicit) State-Space Models” on page 1-20
• “Commands for Creating State-Space Models” on page 1-21

State-Space Model Representations

State-space models rely on linear differential equations or difference equations to
describe system dynamics. Control System Toolbox software supports SISO or MIMO
state-space models in continuous or discrete time. State-space models can include time
delays. You can represent state-space models in either explicit or descriptor (implicit)
form.

State-space models can result from:

• Linearizing a set of ordinary differential equations that represent a physical model of
the system.

1 Linear System Model Objects

1-20

• State-space model identification using System Identification Toolbox software.
• State-space realization of transfer functions. (See “Conversion Between Model Types”

for more information.)

Use ss model objects to represent state-space models.

Explicit State-Space Models

Explicit continuous-time state-space models have the following form:

dx

dt
Ax Bu

y Cx Du

= +

= +

where x is the state vector. u is the input vector, and y is the output vector. A, B, C, and
D are the state-space matrices that express the system dynamics.

A discrete-time explicit state-space model takes the following form:

x n Ax n Bu n

y n Cx n Du n

+[] = [] + []

[] = []+ []

1

where the vectors x[n], u[n], and y[n] are the state, input, and output vectors for the nth
sample.

Descriptor (Implicit) State-Space Models

A descriptor state-space model is a generalized form of state-space model. In continuous
time, a descriptor state-space model takes the following form:

E
dx

dt
Ax Bu

y Cx Du

= +

= +

where x is the state vector. u is the input vector, and y is the output vector. A, B, C, D,
and E are the state-space matrices.

 Models with Fixed Coefficients

1-21

Commands for Creating State-Space Models

Use the commands described in the following table to create state-space models.

Command Description

ss Create explicit state-space model.
dss Create descriptor (implicit) state-space model.
delayss Create state-space models with specified time delays.

Frequency Response Data (FRD) Models

• “Frequency Response Data” on page 1-21
• “Commands for Creating FRD Models” on page 1-22

Frequency Response Data

In the Control System Toolbox software, you can use frd models to store, manipulate,
and analyze frequency response data. An frd model stores a vector of frequency points
with the corresponding complex frequency response data you obtain either through
simulations or experimentally.

For example, suppose you measure frequency response data for the SISO system you
want to model. You can measure such data by driving the system with a sine wave at a
set of frequencies ω1, ω2, ,...,ωn, as shown:

sini(wit) Gi(w) yi(t)

At steady state, the measured response yi(t) to the driving signal at each frequency ωi
takes the following form:

y t a t b i ni i() = +() =sin , , , .w 1…

The measurement yields the complex frequency response G at each input frequency:

1 Linear System Model Objects

1-22

G j ae i ni
jb

w() = =, , , .1…

You can do most frequency-domain analysis tasks on frd models, but you cannot perform
time-domain simulations with them. For information on frequency response analysis of
linear systems, see Chapter 8 of [1].

Commands for Creating FRD Models

Use the following commands to create FRD models.

Command Description

frd Create frd objects from frequency response data.
frestimate Create frd objects by estimating the frequency response of a

Simulink® model. This approach requires Simulink Control
Design™ software. See “Frequency Response Estimation”
in the Simulink Control Design documentation for more
information.

PID Controllers

• “Continuous-Time PID Controller Representations” on page 1-22
• “Discrete-Time PID Controllers” on page 1-23

Continuous-Time PID Controller Representations

You can represent continuous-time Proportional-Integral-Derivative (PID) controllers in
either parallel or standard form. The two forms differ in the parameters used to express
the proportional, integral, and derivative actions and the filter on the derivative term, as
shown in the following table.

Form Formula

Parallel
C K

K

s

K s

T s
p

i d

f

= + +

+1
,

where:

• Kp = proportional gain

 Models with Fixed Coefficients

1-23

Form Formula

• Ki = integrator gain
• Kd = derivative gain
• Tf = derivative filter time

Standard

C K
T s

T s

T

N
s

p
i

d

d
= + +

+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1

1

,

where:

• Kp = proportional gain
• Ti = integrator time
• Td = derivative time
• N = derivative filter constant

Use a controller form that is convenient for your application. For example, if you want to
express the integrator and derivative actions in terms of time constants, use Standard
form.

Discrete-Time PID Controllers

Discrete-time PID controllers are expressed by the following formulas.

Form Formula

Parallel
C K K IF z

K

T DF z
p i

d

f

= + () +
+ ()

,

where:

• Kp = proportional gain
• Ki = integrator gain
• Kd = derivative gain
• Tf = derivative filter time

1 Linear System Model Objects

1-24

Form Formula

Standard

C K
T

IF z
T

T

N
DF z

p
i

d

d
= + () +

+ ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1

,

where:

• Kp = proportional gain
• Ti = integrator time
• Td = derivative time
• N = derivative filter constant

IF(z) and DF(z) are the discrete integrator formulas for the integrator and derivative
filter, respectively. Use the IFormula and DFormula properties of the pid or pidstd
model objects to set the IF(z) and DF(z) formulas. The next table shows available
formulas for IF(z) and DF(z). Ts is the sample time.

IFormula or DFormula IF(z) or DF(z)

ForwardEuler (default) T

z

s

-1

BackwardEuler T z

z

s

-1

Trapezoidal T z

z

s

2

1

1

+

-

If you do not specify a value for IFormula, DFormula, or both, ForwardEuler is used by
default.

 Models with Tunable Coefficients

1-25

Models with Tunable Coefficients
In this section...

“Tunable Generalized LTI Models” on page 1-25
“Modeling Tunable Components” on page 1-25
“Modeling Control Systems with Tunable Components” on page 1-26
“Internal Structure of Generalized Models” on page 1-26

Tunable Generalized LTI Models

Tunable Generalized LTI models represent systems having both fixed and tunable (or
parametric) coefficients.

You can use tunable Generalized LTI models to:

• Model a tunable (or parametric) component of a control system, such as a tunable low-
pass filter.

• Model a control system that contains both:

• Fixed components, such as plant dynamics and sensor dynamics
• Tunable components, such as filters and compensators

You can use tunable Generalized LTI models for parameter studies. For an example, see
“Study Parameter Variation by Sampling Tunable Model”.

If you have Robust Control Toolbox software, you can use tunable Generalized LTI
models for tuning fixed control structures using tuning commands such as systune and
looptune. See Robust Control Toolbox documentation:

• “Automated Tuning Basics”
• “Loop-Shaping Design”
• “H-Infinity Synthesis”

Modeling Tunable Components

Control System Toolbox includes tunable components with predefined structure called
“Control Design Blocks” on page 1-14. You can use tunable Control Design Blocks to
model any tunable component that fits one of the predefined structures.

1 Linear System Model Objects

1-26

To create tunable components with a specific custom structure that is not covered by the
Control Design Blocks:

1 Use the tunable real parameter realp or the generalized matrix genmat to
represent the tunable coefficients of your component.

2 Use the resulting realp or genmat objects as inputs to tf or ss to model the
component. The result is a generalized state-space (genss) model of the component.

For examples of creating such custom tunable components, see:

• “Tunable Low-Pass Filter”
• “Tunable Second-Order Filter”
• “State-Space Model with Both Fixed and Tunable Parameters”

Modeling Control Systems with Tunable Components

To construct a tunable Generalized LTI model representing a control system with both
fixed and tunable components:

1 Model the nontunable components of your system using Numeric LTI models.
2 Model each tunable component using Control Design Blocks or expressions involving

such blocks. See “Modeling Tunable Components” on page 1-25.
3 Use model interconnection commands such as series, parallel or connect, or

the arithmetic operators +, -, *, /, \, and ^, to combine all the components of your
system.

The resulting model is:

• A genss model, if none of the nontunable components is a frequency response data
model (for example, frd)

• A genfrd model, if the nontunable component is a frd model

For an example of constructing a genss model of a control system with both fixed and
tunable components, see “Control System with Tunable Components”.

Internal Structure of Generalized Models

A Generalized model separately stores the numeric and parametric portions of the model
by structuring the model in Standard Form, as shown in the following illustration.

 Models with Tunable Coefficients

1-27

w

u y

0

z

H

B1

B2
.
 .
 .

BN

.

.

.

 ...0 0

0 ... 0

.

.

.

0

B

w and z represent the inputs and outputs of the Generalized model.

H represents all portions of the Generalized model that have fixed (non-parametric)
coefficients. H is:

• A state-space (ss) model, for genss models
• A frequency response data (frd) model, for genfrd models
• A matrix, for genmat models

B represents the parametric components of the Generalized model, which are the Control
Design Blocks B1, . . . , BN. The Blocks property of the Generalized model stores a list of
the names of these blocks. If the Generalized model has blocks that occur multiple times
in B1, . . . , BN, these are only listed once in the Blocks property.

To access the internal representation of a Generalized model, including H and B, use the
getLFTModel command.

1 Linear System Model Objects

1-28

This Standard Form can represent any control structure. To understand why, consider
the control structure as an aggregation of fixed-coefficient elements interacting with the
parametric elements:

Fixed system
components
(actuators,

sensors, etc.)

B1

B2

BN

.
.
.

external
inputs

w

external
outputs

z
y1

u1

y2 u2

uN

yN

H

To rewrite this in Standard Form, define

u u u

y y y

N

N

: , ,

: , , ,

= []

= []

1

1

…

…

and group the tunable control elements B1, . . . , BN into the block-diagonal configuration
C. P includes all the fixed components of the control architecture—actuators, sensors,
and other nontunable elements—and their interconnections.

 Using Model Objects

1-29

Using Model Objects

After you represent your dynamic system as a model object, you can:

• Attach additional information to the model using model attributes (properties). See
“Model Attributes”.

• Manipulate the model using arithmetic and model interconnection operations. See
“Model Interconnection”.

• Analyze the model response using commands such as bode and step. See “Linear
Analysis”.

• Perform parameter studies using model arrays. See “Model Arrays”.
• Design compensators. You can:

• Design compensators for systems specified as numeric LTI models. Available
compensator design techniques include PID tuning, root locus analysis, pole
placement, LQG optimal control, and frequency domain loop-shaping. See “PID
Controller Tuning”, “SISO Feedback Loops”, or “Linear-Quadratic-Gaussian
Control”.

• Manually tune many control architectures using the SISO Design Tool. See “SISO
Feedback Loops”.

• Use tuning commands such as systune, looptune, or hinfstruct to
automatically tune a control system that you represent as a genss model with
tunable blocks (requires Robust Control Toolbox software). See Robust Control
Toolbox documentation:

• “Automated Tuning Basics”
• “Loop-Shaping Design”
• “H-Infinity Synthesis”

1 Linear System Model Objects

1-30

Simulink Block for LTI Systems

You can incorporate model objects into Simulink diagrams using the LTI System block
shown below.

The LTI System block can be accessed either by typing

ltiblock

at the MATLAB prompt or from the Control System Toolbox section of the main
Simulink library.

 Simulink Block for LTI Systems

1-31

The LTI System block consists of the dialog box shown on the right in the figure above.
In the editable text box labeled LTI system variable, enter either the variable name
of an LTI object located in the MATLAB workspace (for example, sys) or a MATLAB
expression that evaluates to an LTI object (for example, tf(1,[1 1])). The LTI System
block accepts both continuous and discrete LTI objects in either transfer function,
zero-pole-gain, or state-space form. All types of delays are supported in the LTI block.
Simulink converts the model to its state-space equivalent prior to initializing the
simulation.

Use the editable text box labeled Initial states to enter an initial state vector for state-
space models. The concept of "initial state" is not well-defined for transfer functions
or zero-pole-gain models, as it depends on the choice of state coordinates used by the
realization algorithm. As a result, you cannot enter nonzero initial states when you
supply TF or ZPK models to LTI blocks in a Simulink diagram.

1 Linear System Model Objects

1-32

References

[1] Dorf, R.C. and R.H. Bishop, Modern Control Systems, Addison-Wesley, Menlo Park,
CA, 1998.

2

Model Creation

• “SISO Model Creation” on page 2-2
• “Discrete-Time Model Creation” on page 2-9
• “MIMO Model Creation” on page 2-12
• “Models with Time Delays” on page 2-19
• “Tunable Low-Pass Filter” on page 2-51
• “Tunable Second-Order Filter” on page 2-52
• “State-Space Model with Both Fixed and Tunable Parameters” on page 2-54
• “Control System with Tunable Components” on page 2-56
• “Control System with Multichannel Analysis Points” on page 2-58
• “Marking Signals of Interest for Control System Analysis and Design” on page

2-62
• “Model Arrays” on page 2-70
• “Model Array with Single Parameter Variation” on page 2-73
• “Select Models from Array” on page 2-76
• “Model Array with Variations in Two Parameters” on page 2-79
• “Study Parameter Variation by Sampling Tunable Model” on page 2-82
• “Linear Parameter-Varying Models” on page 2-85
• “Using LTI Arrays for Simulating Multi-Mode Dynamics” on page 2-93

2 Model Creation

2-2

SISO Model Creation

How to create continuous-time single-input, single-output (SISO) models.

In this section...

“Transfer Function Model Using Numerator and Denominator Coefficients” on page
2-2
“Transfer Function Model Using Zeros, Poles, and Gain” on page 2-3
“State-Space Model” on page 2-3
“Frequency-Response Model” on page 2-5
“Proportional-Integral-Derivative (PID) Controller” on page 2-6

Transfer Function Model Using Numerator and Denominator Coefficients

This example shows how to create continuous-time single-input, single-output (SISO)
transfer functions from their numerator and denominator coefficients using tf.

Create the transfer function G s
s

s s
() =

+ +
2

3 2

:

num = [1 0];

den = [1 3 2];

G = tf(num,den);

num and den are the numerator and denominator polynomial coefficients in descending
powers of s. For example, den = [1 3 2] represents the denominator polynomial
s2 + 3s + 2.

G is a tf model object, which is a data container for representing transfer functions in
polynomial form.

Tip Alternatively, you can specify the transfer function G(s) as an expression in s:

1 Create a transfer function model for the variable s.
s = tf('s');

2 Specify G(s) as a ratio of polynomials in s.

 SISO Model Creation

2-3

G = s/(s^2 + 3*s + 2);

More About

• “What Are Model Objects?”
• “Transfer Functions”

Transfer Function Model Using Zeros, Poles, and Gain

This example shows how to create single-input, single-output (SISO) transfer functions
in factored form using zpk.

Create the factored transfer function G s
s

s i s i s
() =

+ +() + -() +()
5

1 1 2
:

Z = [0];

P = [-1-1i -1+1i -2];

K = 5;

G = zpk(Z,P,K);

Z and P are the zeros and poles (the roots of the numerator and denominator,
respectively). K is the gain of the factored form. For example, G(s) has a real pole at s = –
2 and a pair of complex poles at s = –1 ± i. The vector P = [-1-1i -1+1i -2] specifies
these pole locations.

G is a zpk model object, which is a data container for representing transfer functions in
zero-pole-gain (factorized) form.

More About

• “What Are Model Objects?”
• “Transfer Functions”

State-Space Model

This example shows how to create a continuous-time single-input, single-output (SISO)
state-space model from state-space matrices using ss.

Create a model of an electric motor where the state-space equations are:

2 Model Creation

2-4

dx

dt
Ax Bu

y Cx Du

= +

= +

where the state variables are the angular position θ and angular velocity dθ/dt:

x d

dt

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

q

q ,

u is the electric current, the output y is the angular velocity, and the state-space matrices
are:

A B C D=
- -

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ = [] = []

0 1

5 2

0

3
0 1 0, , , .

To create this model, enter:

A = [0 1;-5 -2];

B = [0;3];

C = [0 1];

D = 0;

sys = ss(A,B,C,D);

sys is an ss model object, which is a data container for representing state-space models.

Tip To represent a system of the form:

E
dx

dt
Ax Bu

y Cx Du

= +

= +

use dss. This command creates a ss model with a nonempty E matrix, also called a
descriptor state-space model. See “MIMO Descriptor State-Space Model” on page 2-14
for an example.

More About

• “What Are Model Objects?”

 SISO Model Creation

2-5

• “State-Space Models”

Frequency-Response Model

This example shows how to create a single-input, single-output (SISO) frequency-
response model using frd.

A frequency-response model stores a vector of frequency points with corresponding
complex frequency response data you obtain either through simulations or
experimentally. Thus, if you measure the frequency response of your system at a set of
test frequencies, you can use the data to create a frequency response model:

1 Load the frequency response data in AnalyzerData.mat.

load AnalyzerData

This command loads the data into the MATLAB workspace as the column vectors
freq and resp. The variables freq and resp contain 256 test frequencies and the
corresponding complex-valued frequency response points, respectively.

Tip To inspect these variables, enter:

whos freq resp

2 Create a frequency response model.

sys = frd(resp,freq);

sys is an frd model object, which is a data container for representing frequency
response data.

You can use frd models with many frequency-domain analysis commands. For example,
visualize the frequency response data using bode.

Tip By default, the frd command assumes that the frequencies are in radians/second. To
specify different frequency units, use the TimeUnit and FrequencyUnit properties of
the frd model object. For example:

sys = frd(resp,freq,'TimeUnit','min','FrequencyUnit','rad/TimeUnit')

sets the frequency units to radians/minute.

2 Model Creation

2-6

More About

• “What Are Model Objects?”
• “Frequency Response Data (FRD) Models”

Proportional-Integral-Derivative (PID) Controller

How to create models representing PID controllers.

• “Continuous-Time PID Controller Representations” on page 2-6
• “Create Continuous-Time Parallel-Form PID Controller” on page 2-7
• “Create Continuous-Time Standard-Form PID Controller” on page 2-7

Continuous-Time PID Controller Representations

You can represent continuous-time Proportional-Integral-Derivative (PID) controllers in
either parallel or standard form. The two forms differ in the parameters used to express
the proportional, integral, and derivative actions and the filter on the derivative term, as
shown in the following table.

Form Formula

Parallel
C K

K

s

K s

T s
p

i d

f

= + +

+1
,

where:

• Kp = proportional gain
• Ki = integrator gain
• Kd = derivative gain
• Tf = derivative filter time

Standard

C K
T s

T s

T

N
s

p
i

d

d
= + +

+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1

1

,

where:

 SISO Model Creation

2-7

Form Formula

• Kp = proportional gain
• Ti = integrator time
• Td = derivative time
• N = derivative filter constant

Use a controller form that is convenient for your application. For example, if you want to
express the integrator and derivative actions in terms of time constants, use Standard
form.

See “Discrete-Time Proportional-Integral-Derivative (PID) Controller” on page 2-10
for information on creating PID Controllers in discrete time.

Create Continuous-Time Parallel-Form PID Controller

This example shows how to create a continuous-time Proportional-Integral-Derivative
(PID) controller in parallel form using pid.

Create the following parallel-form PID controller: C
s

s

s
= + -

+

29 5
26 2 4 3

0 06 1
.

. .

.
.

Kp = 29.5;

Ki = 26.2;

Kd = 4.3;

Tf = 0.06;

C = pid(Kp,Ki,Kd,Tf)

C is a pid model object, which is a data container for representing parallel-form PID
controllers.

Create Continuous-Time Standard-Form PID Controller

This example shows how to create a continuous-time Proportional-Integral-Derivative
(PID) controller in standard form using pidstd.

Create the following standard-form PID controller: C
s

s

s

= + +
+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

29 5 1
1

1 13

0 15

0 15

2 3
1

.
.

.

.

.

.

2 Model Creation

2-8

Kp = 29.5;

Ti = 1.13;

Td = 0.15;

N = 2.3;

C = pidstd(Kp,Ti,Td,N)

C is a pidstd model object, which is a data container for representing standard-form
PID controllers.

More About

• “What Are Model Objects?”
• “PID Controllers”

 Discrete-Time Model Creation

2-9

Discrete-Time Model Creation

How to create discrete-time models.

In this section...

“Discrete-Time Transfer Function Model” on page 2-9
“Discrete-Time Proportional-Integral-Derivative (PID) Controller” on page 2-10

Discrete-Time Transfer Function Model

This example shows how to create a discrete-time transfer function model using tf.

Create the transfer function G z
z

z z
() =

- -
2

2 6

 with a sample time of 0.1 s.

num = [1 0];

den = [1 -2 -6];

Ts = 0.1;

G = tf(num,den,Ts)

num and den are the numerator and denominator polynomial coefficients in descending
powers of z. G is a tf model object.

Tip Create a discrete-time zpk, ss, and frd models in a similar way by appending a
sample time to the input arguments. For examples, see the reference pages for those
commands.

The sample time is stored in the Ts property of G. Access the sample time Ts, using dot
notation:

G.Ts

More About

• “What Are Model Objects?”
• “Models with Fixed Coefficients”

2 Model Creation

2-10

Discrete-Time Proportional-Integral-Derivative (PID) Controller

Discrete-Time PID Controller Representations

Discrete-time PID controllers are expressed by the following formulas.

Form Formula

Parallel
C K K IF z

K

T DF z
p i

d

f

= + () +
+ ()

,

where:

• Kp = proportional gain
• Ki = integrator gain
• Kd = derivative gain
• Tf = derivative filter time

Standard

C K
T

IF z
T

T

N
DF z

p
i

d

d
= + () +

+ ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1
1

,

where:

• Kp = proportional gain
• Ti = integrator time
• Td = derivative time
• N = derivative filter constant

IF(z) and DF(z) are the discrete integrator formulas for the integrator and derivative
filter, respectively. Use the IFormula and DFormula properties of the pid or pidstd
model objects to set the IF(z) and DF(z) formulas. The next table shows available
formulas for IF(z) and DF(z). Ts is the sample time.

 Discrete-Time Model Creation

2-11

IFormula or DFormula IF(z) or DF(z)

ForwardEuler (default) T

z

s

-1

BackwardEuler T z

z

s

-1

Trapezoidal T z

z

s

2

1

1

+

-

If you do not specify a value for IFormula, DFormula, or both, ForwardEuler is used by
default.

Create Discrete-Time Standard-Form PID Controller

This example shows how to create a standard-form discrete-time Proportional-Integral-
Derivative (PID) controller that has Kp = 29.5, Ti = 1.13, Td = 0.15 N = 2.3, and sample
time Ts 0.1 :

C = pidstd(29.5,1.13,0.15,2.3,0.1,...

 'IFormula','Trapezoidal','DFormula','BackwardEuler')

This command creates a pidstd model with IF z
T z

z

s() =
+

-2

1

1
 and DF z

T z

z

s() =
-1

.

You can set the discrete integrator formulas for a parallel-form controller in the same
way, using pid.

More About

• “What Are Model Objects?”
• “PID Controllers”

2 Model Creation

2-12

MIMO Model Creation

How to create multi-input, multi-output (MIMO) models.

In this section...

“MIMO Transfer Function Model” on page 2-12
“MIMO State-Space Model” on page 2-13
“MIMO Descriptor State-Space Model” on page 2-14
“MIMO Frequency Response Data Model” on page 2-16
“Select Input/Output Pairs in MIMO Models” on page 2-17

MIMO Transfer Function Model

This example shows how to create a multi-input, multi-output (MIMO) transfer function
model by concatenating single-input, single-output (SISO) transfer function models.

To create the one-input, two-output MIMO transfer function:

G s

s

s

s

s s

() =

-

+
+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

1

2

4 5
2

,

perform the following steps:

1 Create SISO transfer functions for each channel.

g11 = tf([1 -1],[1 1]);

g21 = tf([1 2],[1 4 5]);

Tip Use zpk instead of tf to create MIMO transfer functions in factorized form.
2 Concatenate the transfer functions.

G = [g11; g21];

More About

• “What Are Model Objects?”

 MIMO Model Creation

2-13

• “Transfer Functions”

MIMO State-Space Model

This example shows how to create a MIMO state-space model using ss.

You create a MIMO state-space model in the same way as you create a SISO state-space
model. The only difference between the SISO and MIMO cases is the dimensions of the
state-space matrices. The dimensions of the B, C, and D matrices increase with the
numbers of inputs and outputs as shown in the following illustration.

A B

C D

of columns =
of inputs

of rows =
of outputs

In this example, you create a state-space model for a rotating body with inertia tensor J,
damping force F, and three axes of rotation, related as:

J
d

dt
F T

y

w
w

w

+ =

= .

The system input T is the driving torque. The output y is the vector of angular velocities
of the rotating body.

To express this system in state-space form:

2 Model Creation

2-14

dx

dt
Ax Bu

y Cx Du

= +

= +

rewrite it as:

d

dt
J F J T

y

w
w

w

= - +

=

- -1 1

.

Then the state-space matrices are:

A J F B J C I D= - = = =
- -1 1

0, , , .

To create this model, enter the following commands:

J = [8 -3 -3; -3 8 -3; -3 -3 8];

F = 0.2*eye(3);

A = -J\F;

B = inv(J);

C = eye(3);

D = 0;

sys_mimo = ss(A,B,C,D);

These commands assume that J is the inertia tensor of a cube rotating about its corner,
and the damping force has magnitude 0.2.

sys_mimo is an ss model.

More About

• “What Are Model Objects?”
• “State-Space Models”

MIMO Descriptor State-Space Model

This example shows how to create a continuous-time descriptor (implicit) state-space
model using dss.

 MIMO Model Creation

2-15

Note: This example uses the same rotating-body system shown in “MIMO State-Space
Model” on page 2-13, where you inverted the inertia matrix J to obtain the value of
the B matrix. If J is poorly-conditioned for inversion, you can instead use a descriptor
(implicit) state-space model.

A descriptor (implicit) state-space model is of the form:

E
dx

dt
Ax Bu

y Cx Du

= +

= +

Create a state-space model for a rotating body with inertia tensor J, damping force F,
and three axes of rotation, related as:

J
d

dt
F T

y

w
w

w

+ =

= .

The system input T is the driving torque. The output y is the vector of angular velocities
of the rotating body. You can write this system as a descriptor state-space model having
the following state-space matrices:

A F B I C I D E J= - = = = =, , , , .0

To create this system, enter:

J = [8 -3 -3; -3 8 -3; -3 -3 8];

F = 0.2*eye(3);

A = -F;

B = eye(3);

C = eye(3);

D = 0;

E = J;

sys_mimo = dss(A,B,C,D,E)

These commands assume that J is the inertia tensor of a cube rotating about its corner,
and the damping force has magnitude 0.2.

2 Model Creation

2-16

sys is an ss model with a nonempty E matrix.

More About

• “What Are Model Objects?”
• “State-Space Models”

MIMO Frequency Response Data Model

This example shows how to create a MIMO frequency-response model using frd.

Frequency response data for a MIMO system includes a vector of complex response data
for each of the input/output (I/O) pair of the system. Thus, if you measure the frequency
response of each I/O pair your system at a set of test frequencies, you can use the data to
create a frequency response model:

1 Load frequency response data in AnalyzerDataMIMO.mat.

load AnalyzerDataMIMO H11 H12 H21 H22 freq

This command loads the data into the MATLAB workspace as five column vectors
H11, H12, H21, H22, and freq. The vector freq contains 100 test frequencies. The
other four vectors contain the corresponding complex-valued frequency response of
each I/O pair of a two-input, two-output system.

Tip To inspect these variables, enter:

whos H11 H12 H21 H22 freq

2 Organize the data into a three-dimensional array.

Hresp = zeros(2,2,length(freq));

Hresp(1,1,:) = H11;

Hresp(1,2,:) = H12;

Hresp(2,1,:) = H21;

Hresp(2,2,:) = H22;

The dimensions of Hresp are the number of outputs, number of inputs, and the
number of frequencies for which there is response data. Hresp(i,j,:) contains the
frequency response from input j to output i.

3 Create a frequency-response model.

 MIMO Model Creation

2-17

H = frd(Hresp,freq);

H is an frd model object, which is a data container for representing frequency response
data.

You can use frd models with many frequency-domain analysis commands. For example,
visualize the response of this two-input, two-output system using bode.

Tip By default, the frd command assumes that the frequencies are in radians/second. To
specify different frequency units, use the TimeUnit and FrequencyUnit properties of
the frd model object. For example:

H = frd(Hresp,freq,'TimeUnit','min','FrequencyUnit','rad/TimeUnit')

sets the frequency units to in radians/minute.

More About

• “What Are Model Objects?”
• “Frequency Response Data (FRD) Models”

Select Input/Output Pairs in MIMO Models

This example shows how to select the response from the first input to the second output
of a MIMO model.

1 Create a two-input, one-output transfer function.

N = {[1 -1],[1];[1 2],[3 1 4]};

D = [1 1 10];

H = tf(N,D)

Note: For more information about using cell arrays to create MIMO transfer
functions, see the tf reference page.

2 Select the response from the second input to the output of H.

To do this, use MATLAB array indexing.

H12 = H(1,2)

2 Model Creation

2-18

For any MIMO system H, the index notation H(i,j) selects the response from the
jth input to the ith output.

 Models with Time Delays

2-19

Models with Time Delays

How to create models that include time delays.

In this section...

“Modeling Time Delays” on page 2-19
“First Order Plus Dead Time Model” on page 2-19
“Input and Output Delay in State-Space Model” on page 2-21
“Transport Delay in MIMO Transfer Function” on page 2-22
“Closing Feedback Loops with Time Delays” on page 2-23
“Discrete-Time Transfer Function with Time Delay” on page 2-26
“Time-Delay Approximation” on page 2-26
“Time-Delay Approximation in Continuous-Time Open-Loop Model” on page 2-27
“Time-Delay Approximation in Continuous-Time Closed-Loop Model” on page 2-32
“Approximate Different Delays with Different Approximation Orders” on page 2-36
“Convert Time Delay in Discrete-Time Model to Factors of 1/z” on page 2-38
“Fractional Time-Delay Approximation in Discrete-Time Model” on page 2-42
“Frequency Response Data (FRD) Model with Time Delay” on page 2-43
“Internal Delays” on page 2-46

Modeling Time Delays

Use the following model properties to represent time delays in linear systems.

• InputDelay, OutputDelay — Time delays at system inputs or outputs
• ioDelay, InternalDelay — Time delays that are internal to the system

In discrete-time models, these properties are constrained to integer values that represent
delays expressed as integer multiples of the sample time. To approximate discrete-time
models with delays that are a fractional multiple of the sample time, use thiran.

First Order Plus Dead Time Model

This example shows how to create a first order plus dead time model using the
InputDelay or OutputDelay properties of tf.

2 Model Creation

2-20

To create the following first-order transfer function with a 2.1 s time delay:

G s e
s

s() =
+

-2 1 1

10

.
,

enter:

G = tf(1,[1 10],'InputDelay',2.1)

where InputDelay specifies the delay at the input of the transfer function.

Tip You can use InputDelay with zpk the same way as with tf:

G = zpk([],-10,1,'InputDelay',2.1)

For SISO transfer functions, a delay at the input is equivalent to a delay at the output.
Therefore, the following command creates the same transfer function:

G = tf(1,[1 10],'OutputDelay',2.1)

Use dot notation to examine or change the value of a time delay. For example, change the
time delay to 3.2 as follows:

 G.OutputDelay = 3.2;

To see the current value, enter:

G.OutputDelay

ans =

 3.2000

Tip An alternative way to create a model with a time delay is to specify the transfer
function with the delay as an expression in s:

1 Create a transfer function model for the variable s.
s = tf('s');

2 Specify G(s) as an expression in s.

 Models with Time Delays

2-21

G = exp(-2.1*s)/(s+10);

More About

• “What Are Model Objects?”
• “Transfer Functions”

Input and Output Delay in State-Space Model

This example shows how to create state-space models with delays at the inputs and
outputs, using the InputDelay or OutputDelay properties of ss.

Create a state-space model describing the following one-input, two-output system:

dx t

dt
x t u t

y t
x t

x t

()
= - () + -()

() =
-()

- ()
È

Î
Í

˘

˚
˙

2 3 1 5

0 7

.

.
.

This system has an input delay of 1.5. The first output has an output delay of 0.7, and
the second output is not delayed.

Note: In contrast to SISO transfer functions, input delays are not equivalent to output
delays for state-space models. Shifting a delay from input to output in a state-space
model requires introducing a time shift in the model states. For example, in the model of
this example, defining T = t – 1.5 and X(T) = x(T + 1.5) results in the following equivalent
system:

dX T

dT
X T u T

y T
X T

X T

()
= - () + ()

() =
-()

- -()
È

Î
Í

˘

˚
˙

2 3

2 2

1 5

.

.
.

All of the time delays are on the outputs, but the new state variable X is time-shifted
relative to the original state variable x. Therefore, if your states have physical meaning,

2 Model Creation

2-22

or if you have known state initial conditions, consider carefully before shifting time
delays between inputs and outputs.

To create this system:

1 Define the state-space matrices.

A = -2;

B = 3;

C = [1;-1];

D = 0;

2 Create the model.

G = ss(A,B,C,D,'InputDelay',1.5,'OutputDelay',[0.7;0])

G is a ss model.

Tip Use delayss to create state-space models with more general combinations of input,
output, and state delays, of the form:

dx

dt
Ax t Bu t A x t t B u t t

y t Cx t Du t

j j j j

j

N

= + + - + -

= +

=

Â() () (() ())

() () (

1

)) (() ())+ - + -
=

Â C x t t D u t tj j j j

j

N

1

More About

• “What Are Model Objects?”
• “State-Space Models”

Transport Delay in MIMO Transfer Function

This example shows how to create a MIMO transfer function with different transport
delays for each input-output (I/O) pair.

 Models with Time Delays

2-23

Create the MIMO transfer function:

H s

e
s

e
s

s

e
s

s

() =

+

+
-

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

- -

-

0 1 0 3

0 2

2 1

10

10
1

5

. .

.

.

Time delays in MIMO systems can be specific to each I/O pair, as in this example. You
cannot use InputDelay and OutputDelay to model I/O-specific transport delays.
Instead, use ioDelay to specify the transport delay across each I/O pair.

To create this MIMO transfer function:

1 Create a transfer function model for the variable s.

s = tf('s');

2 Use the variable s to specify the transfer functions of H without the time delays.

H = [2/s (s+1)/(s+10); 10 (s-1)/(s+5)];

3 Specify the ioDelay property of H as an array of values corresponding to the
transport delay for each I/O pair.

H.ioDelay = [0.1 0.3; 0 0.2];

H is a two-input, two-output tf model. Each I/O pair in H has the time delay specified by
the corresponding entry in tau.

Closing Feedback Loops with Time Delays

This example shows how internal delays arise when you interconnect models that have
input, output, or transport time delays.

Create a model of the following control architecture:

-

C G

yr e-2.1s

s +10

2.3

s
0.5 +

2 Model Creation

2-24

G is the plant model, which has an input delay. C is a proportional-integral (PI)
controller.

To create a model representing the closed-loop response of this system:

1 Create the plant G and the controller C.

G = tf(1,[1 10],'InputDelay',2.1);

C = pid(0.5,2.3);

C has a proportional gain of 0.5 and an integral gain of 2.3.
2 Use feedback to compute the closed-loop response from r to y.

T = feedback(C*G,1);

The time delay in T is not an input delay as it is in G. Because the time delay is internal
to the closed-loop system, the software returns T as an ss model with an internal time
delay of 2.1 seconds.

Note: In addition to feedback, any system interconnection function (including
parallel and series) can give rise to internal delays.

T is an exact representation of the closed-loop response, not an approximation. To access
the internal delay value, enter:

T.InternalDelay

A step plot of T confirms the presence of the time delay:

step(T)

 Models with Time Delays

2-25

Note: Most analysis commands, such as step, bode and margin, support models with
internal delays.

The internal time delay is stored in the InternalDelay property of T. Use dot notation
to access InternalDelay. For example, to change the internal delay to 3.5 seconds,
enter:

 T.InternalDelay = 3.5

2 Model Creation

2-26

You cannot modify the number of internal delays because they are structural properties
of the model.

More About

• “Internal Delays” on page 2-46

Discrete-Time Transfer Function with Time Delay

This example shows how to create a discrete-time transfer function with a time delay.

Specify time delays for discrete-time models in the same way as for continuous-time
models, except for discrete-time models, delay values must be integer multiples of the
sample time. For example, create the following first-order transfer function, with a
sample time of Ts = 0.1 s:

H z z
z

() =
-

-25 2

0 95.
.

H = tf(2,[1 -0.95],0.1,'InputDelay',25)

Setting InputDelay to 25 results in a delay of 25 sampling periods.

Tip Use thiran to approximate discrete-time models with delays that are a fractional
multiple of the sample time.

Time-Delay Approximation

Many control design algorithms cannot handle time delays directly. For example,
techniques such as root locus, LQG, and pole placement do not work properly if time
delays are present. A common technique is to replace delays with all-pass filters that
approximate the delays.

To approximate time delays in continuous-time models, use the pade command to
compute a Padé approximation. The Padé approximation is valid only at low frequencies,
and provides better frequency-domain approximation than time-domain approximation.

 Models with Time Delays

2-27

It is therefore important to compare the true and approximate responses to choose the
right approximation order and check the approximation validity.

For discrete-time models, use absorbDelay to convert a time delay to factors of
1/z where the time delay is an integer multiple of the sample time. Use thiran to
approximate fractional time delays.

Related Examples

• “Time-Delay Approximation in Continuous-Time Open-Loop Model” on page 2-27
• “Time-Delay Approximation in Continuous-Time Closed-Loop Model” on page 2-32
• “Approximate Different Delays with Different Approximation Orders” on page

2-36
• “Convert Time Delay in Discrete-Time Model to Factors of 1/z” on page 2-38
• “Fractional Time-Delay Approximation in Discrete-Time Model” on page 2-42

Time-Delay Approximation in Continuous-Time Open-Loop Model

This example shows how to approximate delays in a continuous-time open-loop system
using pade.

Padé approximation is helpful when using analysis or design tools that do not support
time delays.

1 Create sample open-loop system with an output delay.

yu e-2.6s

s2 + 0.9s + 1

1

P

s = tf('s');

P = exp(-2.6*s)/(s^2+0.9*s+1);

P is a second-order transfer function (tf) object with a time delay.
2 Compute the first-order Padé approximation of P.

Pnd1 = pade(P,1)

2 Model Creation

2-28

Pnd1 =

 -s + 0.7692

 s^3 + 1.669 s^2 + 1.692 s + 0.7692

Continuous-time transfer function.

This command replaces all time delays in P with a first-order approximation.
Therefore, Pnd1 is a third-order transfer function with no delays.

3 Compare the frequency response of the original and approximate models using
bodeplot.

h = bodeoptions;

h.PhaseMatching = 'on';

bodeplot(P,'-b',Pnd1,'-.r',{0.1,10},h)

legend('Exact delay','First-Order Pade','Location','SouthWest')

 Models with Time Delays

2-29

The magnitude of P and Pnd1 match exactly. However, the phase of Pnd1 deviates
from the phase of P beyond approximately 1 rad/s.

4 Increase the Padé approximation order to extend the frequency band in which the
phase approximation is good.

Pnd3 = pade(P,3);

5 Compare the frequency response of P, Pnd1 and Pnd3.

bodeplot(P,'-b',Pnd3,'-.r',Pnd1,':k',{0.1 10},h)

legend('Exact delay','Third-Order Pade','First-Order Pade',...

 'Location','SouthWest')

2 Model Creation

2-30

The phase approximation error is reduced by using a third-order Padé
approximation.

6 Compare the time domain responses of the original and approximated systems using
stepplot.

stepplot(P,'-b',Pnd3,'-.r',Pnd1,':k')

legend('Exact delay','Third-Order Pade','First-Order Pade',...

 'Location','Southeast')

 Models with Time Delays

2-31

Using the Padé approximation introduces a nonminimum phase artifact (“wrong
way” effect) in the initial transient response. The effect is quite pronounced in the
first-order approximation, which dips significantly below zero before changing
direction. The effect is reduced in the higher-order approximation, which far more
closely matches the exact system’s response.

Note: Using too high an approximation order may result in numerical issues and
possibly unstable poles. Therefore, avoid Padé approximations with order N>10.

2 Model Creation

2-32

Time-Delay Approximation in Continuous-Time Closed-Loop Model

This example shows how to approximate delays in a continuous-time closed-loop system
with internal delays, using pade.

Padé approximation is helpful when using analysis or design tools that do not support
time delays.

1 Create sample continuous-time closed-loop system with an internal delay.

-

C G

yr e-4.2s

s2 + 0.68s + 1

s +10.15

s
0.06 + + 0.006s

Construct a model Tcl of the closed-loop transfer function from r to y.

s = tf('s');

G = (s+1)/(s^2+.68*s+1)*exp(-4.2*s);

C = pid(0.06,0.15,0.006);

Tcl = feedback(G*C,1);

Examine the internal delay of Tcl.

Tcl.InternalDelay

ans =

 4.2000

2 Compute the first-order Padé approximation of Tcl.

Tnd1 = pade(Tcl,1);

Tnd1 is a state-space (ss) model with no delays.
3 Compare the frequency response of the original and approximate models.

h = bodeoptions;

h.PhaseMatching = 'on';

bodeplot(Tcl,'-b',Tnd1,'-.r',{.1,10},h);

 Models with Time Delays

2-33

legend('Exact delay','First-Order Pade','Location','SouthWest');

The magnitude and phase approximation errors are significant beyond 1 rad/s.
4 Compare the time domain response of Tcl and Tnd1 using stepplot.

stepplot(Tcl,'-b',Tnd1,'-.r');

legend('Exact delay','First-Order Pade','Location','SouthEast');

2 Model Creation

2-34

Using the Padé approximation introduces a nonminimum phase artifact (“wrong
way” effect) in the initial transient response.

5 Increase the Padé approximation order to see if this will extend the frequency with
good phase and magnitude approximation.

Tnd3 = pade(Tcl,3);

6 Observe the behavior of the third-order Padé approximation of Tcl. Compare the
frequency response of Tcl and Tnd3.

bodeplot(Tcl,'-b',Tnd3,'-.r',Tnd1,'--k',{.1,10},h);

legend('Exact delay','Third-Order Pade','First-Order Pade',...

 'Location','SouthWest');

 Models with Time Delays

2-35

The magnitude and phase approximation errors are reduced when a third-order
Padé approximation is used.

Increasing the Padé approximation order extends the frequency band where the
approximation is good. However, too high an approximation order may result in
numerical issues and possibly unstable poles. Therefore, avoid Padé approximations with
order N>10.

More About

• “Internal Delays” on page 2-46

2 Model Creation

2-36

Approximate Different Delays with Different Approximation Orders

This example shows how to specify different Padé approximation orders to approximate
internal and output delays in a continuous-time open-loop system.

Load a sample continuous-time open-loop system that contains internal and output time
delays.

load(fullfile(matlabroot,'examples','control','PadeApproximation1.mat'),'sys')

sys

sys =

 a =

 x1 x2

 x1 -1.5 -0.1

 x2 1 0

 b =

 u1

 x1 1

 x2 0

 c =

 x1 x2

 y1 0.5 0.1

 d =

 u1

 y1 0

 (values computed with all internal delays set to zero)

 Output delays (seconds): 1.5

 Internal delays (seconds): 3.4

Continuous-time state-space model.

sys is a second-order continuous-time ss model with internal delay 3.4 s and output
delay 1.5 s.

Use the pade function to compute a third-order approximation of the internal delay and
a first-order approximation of the output delay.

 Models with Time Delays

2-37

P13 = pade(sys,inf,1,3);

size(P13)

State-space model with 1 outputs, 1 inputs, and 6 states.

The three input arguments following sys specify the approximation orders of any input,
output, and internal delays of sys, respectively. inf specifies that a delay is not to be
approximated. The approximation orders for the output and internal delays are one and
three respectively.

Approximating the time delays with pade absorbs delays into the dynamics, adding as
many states to the model as orders in the approximation. Thus, P13 is a sixth-order
model with no delays.

For comparison, approximate only the internal delay of sys, leaving the output delay
intact.

P3 = pade(sys,inf,inf,3);

size(P3)

State-space model with 1 outputs, 1 inputs, and 5 states.

P3.OutputDelay

ans =

 1.5000

P3.InternalDelay

ans =

 Empty matrix: 0-by-1

P3 retains the output delay, but the internal delay is approximated and absorbed into the
state-space matrices, resulting in a fifth-order model without internal delays.

Compare the frequency response of the exact and approximated systems sys, P13, P3.

h = bodeoptions;

2 Model Creation

2-38

h.PhaseMatching = 'on';

bode(sys,'b-',P13,'r-.',P3,'k--',h,{.01,10});

legend('sys','approximated output and internal delays','approximated internal delay only',...

 'location','SouthWest')

Notice that approximating the internal delay loses the gain ripple displayed in the exact
system.

Convert Time Delay in Discrete-Time Model to Factors of 1/z

This example shows how to convert a time delay in a discrete-time model to factors of 1/
z.

 Models with Time Delays

2-39

In a discrete-time model, a time delay of one sampling interval is equivalent to a factor
of 1/_z_ (a pole at z = 0) in the model. Therefore, time delays stored in the InputDelay,
OutputDelay, or ioDelay properties of a discrete-time model can be rewritten in the
model dynamics by rewriting them as poles at z = 0. However, the additional poles
increase the order of the system. Particularly for large time delays, this can yield systems
of very high order, leading to long computation times or numerical inaccuracies.

To illustrate how to eliminate time delays in a discrete-time closed-loop model, and to
observe the effects of doing so, create the following closed-loop system:

G is a first-order discrete-time system with an input delay, and C is a PI controller.

G = ss(0.9,0.125,0.08,0,'Ts',0.01,'InputDelay',7);

C = pid(6,90,0,0,'Ts',0.01);

T = feedback(C*G,1);

Closing the feedback loop on a plant with input delays gives rise to internal delays in the
closed-loop system. Examine the order and internal delay of T.

order(T)

ans =

 2

T.InternalDelay

ans =

 7

T is a second-order state-space model. One state is contributed by the first-order plant,
and the other by the one pole of the PI controller. The delays do not increase the order of
T. Instead, they are represented as an internal delay of seven time steps.

2 Model Creation

2-40

Replace the internal delay by .

Tnd = absorbDelay(T);

This command converts the internal delay to seven poles at z = 0. To confirm this,
examine the order and internal delay of Tnd.

order(Tnd)

ans =

 9

Tnd.InternalDelay

ans =

 Empty matrix: 0-by-1

Tnd has no internal delay, but it is a ninth-order model, due to the seven extra poles
introduced by absorbing the seven-unit delay into the model dynamics.

Despite this difference in representation, the responses of Tnd exactly match those of T.

stepplot(T,Tnd,'r--')

legend('T','Tnd')

 Models with Time Delays

2-41

bodeplot(T,Tnd,'r--')

legend('T','Tnd')

2 Model Creation

2-42

Fractional Time-Delay Approximation in Discrete-Time Model

Use the thiran command to approximate a time delay that is a fractional multiple of the
sample time as a Thiran all-pass filter.

For a time delay of tau and a sample time of Ts, the syntax thiran(tau,Ts) creates a
discrete-time transfer function that is the product of two terms:

• A term representing the integer portion of the time delay as a pure line delay, (1/z)N,
where N = ceil(tau/Ts).

• A term approximating the fractional portion of the time delay (tau - NTs) as a
Thiran all-pass filter.

 Models with Time Delays

2-43

Discretizing a Padé approximation does not guarantee good phase matching between
the continuous-time delay and its discrete approximation. Using thiran to generate
a discrete-time approximation of a continuous-time delay can yield much better phase
matching. For example, the following figure shows the phase delay of a 10.2-second time
delay discretized with a sample time of 1 s, approximated in three ways:

• a first-order Padé approximation, discretized using the tustin method of c2d
• an 11th-order Padé approximation, discretized using the tustin method of c2d
• an 11th-order Thiran filter

The Thiran filter yields the closest approximation of the 10.2-second delay.

See the thiran reference page for more information about Thiran filters.

Frequency Response Data (FRD) Model with Time Delay

This example shows that absorbing time delays into frequency response data can cause
undesirable phase wrapping at high frequencies.

When you collect frequency response data for a system that includes time delays, you
can absorb the time delay into the frequency response as a phase shift. Alternatively, if

2 Model Creation

2-44

you are able to separate time delays from your measured frequency response, you can
represent the delays using the InputDelay, OutputDelay, or ioDelay properties of the
frd model object. The latter approach can give better numerical results, as this example
illustrates.

The frd model fsys includes a transport delay of 2 s. Load the model into the
MATLAB® workspace and inspect the time delay.

load(fullfile(matlabroot,'examples','control','frddelayexample.mat'),'fsys')

fsys.ioDelay

ans =

 2

A Bode plot of fsys shows the effect of the transport delay, causing the accumulation of
phase as frequency increases.

bodeplot(fsys)

 Models with Time Delays

2-45

The absorbDelay command absorbs all time delays directly into the frequency response,
resulting in an frd model with ioDelay = 0.

fsys2 = absorbDelay(fsys);

fsys2.ioDelay

ans =

 0

Comparing the two ways of representing the delay shows that absorbing the delay into
the frequency response causes phase-wrapping.

2 Model Creation

2-46

bode(fsys,fsys2)

Phase wrapping can introduce numerical inaccuracy at high frequencies or where
the frequency grid is sparse. For that reason, if your system takes the form ,
you might get better results by measuring frequency response data for G(s) and using
InputDelay, OutputDelay, or ioDelay to model the time delay .

Internal Delays

Using the InputDelay, OutputDelay, and ioDelay properties, you can model simple
processes with transport delays. However, these properties cannot model more complex
situations, such as feedback loops with delays. In addition to the InputDelay and

 Models with Time Delays

2-47

OutputDelay properties, state-space (ss) models have an InternalDelay property.
This property lets you model the interconnection of systems with input, output, or
transport delays, including feedback loops with delays. You can use InternalDelay
property to accurately model and analyze arbitrary linear systems with delays. Internal
delays can arise from the following:

• Concatenating state-space models with input and output delays
• Feeding back a delayed signal
• Converting MIMO tf or zpk models with transport delays to state-space form

Using internal time delays, you can do the following:

• In continuous time, generate approximate-free time and frequency simulations,
because delays do not have to be replaced by a Padé approximation. In continuous
time, this allows for more accurate analysis of systems with long delays.

• In discrete time, keep delays separate from other system dynamics, because delays
are not replaced with poles at z = 0, which boosts efficiency of time and frequency
simulations for discrete-time systems with long delays.

• Use most Control System Toolbox functions.
• Test advanced control strategies for delayed systems. For example, you can

implement and test an accurate model of a Smith predictor. See the example Control
of Processes with Long Dead Time: The Smith Predictor .

Why Internal Delays Are Necessary

This example illustrates why input, output, and transport delays not enough to model
all types of delays that can arise in dynamic systems. Consider the simple feedback loop
with a 2 s. delay:

s+2

e
-2s

The closed-loop transfer function is

e

s e

s

s

-

-
+ +

2

2
2

2 Model Creation

2-48

The delay term in the numerator can be represented as an output delay. However, the
delay term in the denominator cannot. In order to model the effect of the delay on the
feedback loop, the InternalDelay property is needed to keep track of internal coupling
between delays and ordinary dynamics.

Typically, you do not create state-space models with internal delays directly, by
specifying the A, B, C, and D matrices together with a set of internal delays. Rather, such
models arise when you interconnect models having delays. There is no limitation on how
many delays are involved and how the models are connected. For an example of creating
an internal delay by closing a feedback loop, see “Closing Feedback Loops with Time
Delays” on page 2-23.

Behavior of Models With Internal Delays

When you work with models having internal delays, be aware of the following behavior:

• When a model interconnection gives rise to internal delays, the software returns an
ss model regardless of the interconnected model types. This occurs because only ss
supports internal delays.

• The software fully supports feedback loops. You can wrap a feedback loop around any
system with delays.

• When displaying the A, B, C, and D matrices, the software sets all delays to zero
(creating a zero-order Padé approximation). This approximation occurs for the display
only, and not for calculations using the model.

For some systems, setting delays to zero creates singular algebraic loops, which result
in either improper or ill-defined, zero-delay approximations. For these systems:

• Entering sys returns only sizes for the matrices of a system named sys.
• Entering sys.a produces an error.

The limited display and the error do not imply a problem with the model sys
itself.

Inside Time Delay Models

State-space objects use generalized state-space equations to keep track of internal delays.
Conceptually, such models consist of two interconnected parts:

• An ordinary state-space model H(s) with an augmented I/O set

 Models with Time Delays

2-49

• A bank of internal delays.

The corresponding state-space equations are:

&x Ax t B u t B w t

y t C x t D u t D w t

z t C x

= + +

= + +

=

() () ()

() () () ()

() (

1 2

1 11 12

2 tt D u t D w t

w t z t j Nj j

) () ()

() (), ,...,

+ +

= - =

21 22

1t

You need not bother with this internal representation to use the tools. If, however, you
want to extract H or the matrices A, B1, B2, ... , you can use getDelayModel, For the
example:

P = 5*exp(-3.4*s)/(s+1);

C = 0.1 * (1 + 1/(5*s));

T = feedback(ss(P*C),1);

[H,tau] = getDelayModel(T,'lft');

size(H)

Note that H is a two-input, two-output model whereas T is SISO. The inverse operation
(combining H and tau to construct T) is performed by setDelayModel.

See [1], [2] for details.

2 Model Creation

2-50

Functions That Support Internal Time Delays

The following commands support internal delays for both continuous- and discrete-time
systems:

• All interconnection functions
• Time domain response functions—except for impulse and initial
• Frequency domain functions—except for norm

Limitations on Functions that Support Internal Time Delays

The following commands support internal delays for both continuous- and discrete-time
systems and have certain limitations:

• allmargin, margin—Uses interpolation, therefore these commands are only as
precise as the fineness of the specified grid.

• pole, zero—Returns poles and zeros of the system with all delays set to zero.
• ssdata, get—If an SS model has internal delays, these commands return the A, B, C,

and D matrices of the system with all internal delays set to zero. Use getDelayModel
to access the internal state-space representation of models with internal delays.

Functions That Do Not Support Internal Time Delays

The following commands do not support internal time delays:

• System dynamics—norm and isstable
• Time-domain analysis—initial and initialplot
• Model simplification—balreal, balred, and modred
• Compensator design—rlocus, lqg, lqry, lqrd, kalman, kalmd, lqgreg, lqgtrack,

lqi, and augstate.

To use these functions on a system with internal delays, use pade to approximate the
internal delays. See “Time-Delay Approximation” on page 2-26.

References

[1] P. Gahinet and L.F. Shampine, "Software for Modeling and Analysis of Linear
Systems with Delays," Proc. American Control Conf., Boston, 2004, pp. 5600-5605

[2] L.F. Shampine and P. Gahinet, Delay-differential-algebraic Equations in Control
Theory, Applied Numerical Mathematics, 56 (2006), pp. 574-588

 Tunable Low-Pass Filter

2-51

Tunable Low-Pass Filter

This example shows how to create the low-pass filter F = a/(s + a) with one tunable
parameter a.

You cannot use ltiblock.tf to represent F, because the numerator and denominator
coefficients of an ltiblock.tf block are independent. Instead, construct F using the
tunable real parameter object realp.

1 Create a tunable real parameter.

a = realp('a',10);

The realp object a is a tunable parameter with initial value 10.
2 Use tf to create the tunable filter F:

F = tf(a,[1 a]);

F is a genss object which has the tunable parameter a in its Blocks property. You can
connect F with other tunable or numeric models to create more complex models of control
systems. For an example, see “Control System with Tunable Components”.

Related Examples
• “Tunable Second-Order Filter” on page 2-52
• “State-Space Model with Both Fixed and Tunable Parameters” on page 2-54
• “Control System with Tunable Components” on page 2-56

More About
• “Models with Tunable Coefficients”

2 Model Creation

2-52

Tunable Second-Order Filter

This example shows how to create a parametric model of the second-order filter:

F s

s s

n

n n

() =
+ +

w

zw w

2

2 2
2

,

where the damping ζ and the natural frequency ωn are tunable parameters.

1 Define the tunable parameters using realp.

wn = realp('wn',3);

zeta = realp('zeta',0.8);

wn and zeta are realp parameter objects, with initial values 3 and 0.8, respectively.
2 Create a model of the filter using the tunable parameters.

F = tf(wn^2,[1 2*zeta*wn wn^2])

The inputs to tf are the vectors of numerator and denominator coefficients
expressed in terms of wn and zeta.

F is a genss. The property F.Blocks lists the two tunable parameters wn and zeta.
3 (Optional) Examine the number of tunable blocks in the model using nblocks.

nblocks(F)

This command returns the result:

ans =

 6

F has two tunable parameters, but the parameter wn appears five times — twice in
the numerator and three times in the denominator.

4 (Optional) Rewrite F for fewer occurrences of wn.

The second-order filter transfer function can be expressed as follows:

 Tunable Second-Order Filter

2-53

F s

s s

n n

() =
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ +

1

2 1

2

w
z

w

.

Use this expression to create the tunable filter:

F = tf(1,[(1/wn)^2 2*zeta*(1/wn) 1])

5 (Optional) Examine the number of tunable blocks in the new filter model.

nblocks(F)

This command returns the result:

ans =

 4

In the new formulation, there are only three occurrences of the tunable parameter
wn. Reducing the number of occurrences of a block in a model can improve
performance time of calculations involving the model. However, the number of
occurrences does not affect the results of tuning the model or sampling it for
parameter studies.

Related Examples
• “Tunable Low-Pass Filter” on page 2-51
• “State-Space Model with Both Fixed and Tunable Parameters” on page 2-54
• “Control System with Tunable Components” on page 2-56

More About
• “Models with Tunable Coefficients”

2 Model Creation

2-54

State-Space Model with Both Fixed and Tunable Parameters

This example shows how to create a state-space (genss) model having both fixed and
tunable parameters.

Create a state-space model having the following state-space matrices:

A
a b

ab
B C D=

+È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙ = [] =

1

0

3 0

1 5
0 3 0 0,

.

.
, . , ,

where a and b are tunable parameters, whose initial values are –1 and 3, respectively.

1 Create the tunable parameters using realp.

 a = realp('a',-1);

 b = realp('b',3);

2 Define a generalized matrix using algebraic expressions of a and b.

A = [1 a+b;0 a*b]

A is a generalized matrix whose Blocks property contains a and b. The initial value
of A is M = [1 2;0 -3], from the initial values of a and b.

3 Create the fixed-value state-space matrices.

B = [-3.0;1.5];

C = [0.3 0];

D = 0;

4 Use ss to create the state-space model.

sys = ss(A,B,C,D)

sys is a generalized LTI model (genss) with tunable parameters a and b.

Related Examples
• “Tunable Low-Pass Filter” on page 2-51
• “Tunable Second-Order Filter” on page 2-52
• “Control System with Tunable Components” on page 2-56

 State-Space Model with Both Fixed and Tunable Parameters

2-55

More About
• “Models with Tunable Coefficients”

2 Model Creation

2-56

Control System with Tunable Components
This example shows how to create a tunable model of the control system in the following
illustration.

r
-

G(s)C(s) y
+

F(s)

S(s)

The plant response G(s) = 1/(s + 1)2. The model of sensor dynamics is S(s) = 5/(s + 4). The
controller C is a tunable PID controller, and the prefilter F = a/(s + a) is a low-pass filter
with one tunable parameter, a.

Create models representing the plant and sensor dynamics.

Because the plant and sensor dynamics are fixed, represent them using numeric LTI
models zpk and tf.

G = zpk([],[-1,-1],1);

S = tf(5,[1 4]);

Create a tunable representation of the controller C.

C = ltiblock.pid('C','PID');

C =

 Parametric continuous-time PID controller "C" with formula:

 1 s

 Kp + Ki * --- + Kd * --------

 s Tf*s+1

 and tunable parameters Kp, Ki, Kd, Tf.

Type "pid(C)" to see the current value and "get(C)" to see all properties.

C is a ltiblock.pid object, which is a Control Design Block with a predefined
proportional-integral-derivative (PID) structure.

 Control System with Tunable Components

2-57

Create a model of the filter F = a/(s + a) with one tunable parameter.

a = realp('a',10);

F = tf(a,[1 a]);

a is a realp (real tunable parameter) object with initial value 10. Using a as a coefficient
in tf creates the tunable genss model object F.

Connect the models together to construct a model of the closed-loop response from r to y.

T = feedback(G*C,S)*F

T is a genss model object. In contrast to an aggregate model formed by connecting only
Numeric LTI models, T keeps track of the tunable elements of the control system. The
tunable elements are stored in the Blocks property of the genss model object.

Display the tunable elements of T.

T.Blocks

ans =

 C: [1x1 ltiblock.pid]

 a: [1x1 realp]

If you have Robust Control Toolbox software, you can use tuning commands such as
systune to tune the free parameters of T to meet design requirements you specify.

Related Examples
• “Tunable Low-Pass Filter” on page 2-51
• “Tunable Second-Order Filter” on page 2-52
• “State-Space Model with Both Fixed and Tunable Parameters” on page 2-54

More About
• “Models with Tunable Coefficients”

2 Model Creation

2-58

Control System with Multichannel Analysis Points

This example shows how to insert multichannel analysis points in a generalized state-
space model of a MIMO control system.

Consider the following two-input, two-output control system.

The plant G has two inputs and two outputs. Therefore, the line marked y in the block
diagram represents two signals, y(1) and y(2). Similarly, r and e each represent two
signals.

Suppose you want to create tuning requirements or extract responses that
require injecting or measuring signals at the locations L and V. To do so, create an
AnalysisPoint block and include it in the closed-loop model of the control system as
shown in the following illustration.

To create a model of this system, first create the numeric LTI models and control design
blocks that represent the plant and controller elements. D is a tunable gain block, and
C_L and C_V are tunable PI controllers. Suppose the plant model is the following:

 Control System with Multichannel Analysis Points

2-59

s = tf('s');

G = [87.8 -86.4 ; 108.2 -109.6]/(75*s+1);

D = ltiblock.gain('Decoupler',eye(2));

C_L = ltiblock.pid('C_L','pi');

C_V = ltiblock.pid('C_V','pi');

Create an AnalysisPoint block that bundles together the L and V channels.

AP_1 = AnalysisPoint('AP_1',2)

AP_1 =

Multi-channel analysis point at locations:

 AP_1(1)

 AP_1(2)

Type "ss(AP_1)" to see the current value and "get(AP_1)" to see all properties.

For convenience, rename the channels to match the corresponding signals.

AP_1.Location = {'L';'V'}

AP_1 =

Multi-channel analysis point at locations:

 L

 V

Type "ss(AP_1)" to see the current value and "get(AP_1)" to see all properties.

The following diagram illustrates the input names, output names, and channel names
(locations) in the block AP_1.

2 Model Creation

2-60

The input and output names of the AnalysisPoint block are distinct from the channel
names. Use the channel names to refer to the analysis-point locations when extracting
responses or defining design goals for tuning. You can use the input and output names
AP_1.u and AP_1.y, for example, when interconnecting blocks using the connect
command.

You can now build the closed-loop model of the control system. First, join all the plant
and controller blocks along with the first AnalysisPoint block.

GC = G*AP_1*append(C_L,C_V)*D;

Then, close the feedback loop. Recall that GC has two inputs and outputs.

CL = feedback(GC,eye(2));

You can now use the analysis points for analysis or tuning. For example, extract the
SISO closed-loop transfer function from 'L' to the first output. Assign a name to the
output so you can reference it in analysis functions. The software automatically expands
the assigned name 'y' to the vector-valued output signals {y(1),y(2)}.

CL.OutputName = 'y';

TLy1 = getIOTransfer(CL,'L','y(1)');

bodeplot(TLy1);

 Control System with Multichannel Analysis Points

2-61

See Also
AnalysisPoint

More About
• “Marking Signals of Interest for Control System Analysis and Design” on page

2-62

2 Model Creation

2-62

Marking Signals of Interest for Control System Analysis and
Design

In this section...

“Analysis Points” on page 2-62
“Specifying Analysis Points for MATLAB Models” on page 2-64
“Specifying Analysis Points for Simulink Models” on page 2-64
“Referring to Analysis Points for Analysis and Tuning” on page 2-67

Analysis Points

Whether you model your control system in MATLAB or Simulink, use analysis points
to mark points of interest in the model. Analysis points give you access to internal
signals, perform open-loop analysis, or specify requirements for controller tuning. In
the block diagram representation, an analysis point can be thought of as an access
port to a signal flowing from one block to another. In Simulink, analysis points are
attached to the outports of Simulink blocks. For example, the reference signal, r, and
the control signal, u, are analysis points of the following simple feedback loop model,
ex_scd_analysis_pts1:

Figure 1: Simple Feedback Loop

Analysis points serve three purposes:

• Input: The software injects an additive input signal at an analysis point, for example,
to model a disturbance at the plant input, u.

• Output: The software measures the signal value at a point, for example, to study the
impact of this disturbance on the plant output, y.

 Marking Signals of Interest for Control System Analysis and Design

2-63

• Loop Opening: The software interprets a break in the signal flow at a point, for
example, to study the open-loop response at the plant input, u.

You can apply these purposes concurrently. For example, to compute the open-loop
response from u to y, you can treat u as both a loop opening and an input. When you use
an analysis point for more than one purpose, the software always applies the purposes
in a specific sequence: output (measurement), then loop opening, then input, as shown in
the following diagram.

Figure 2: Analysis Point as Input, Output, and Loop Opening

Analysis points enable you to extract open-loop and closed-loop responses from a control
system model. For example, suppose T represents the closed-loop system in the model
ex_scd_analysis_pts1, and u and y are marked as analysis points. T can be either a
generalized state-space model or an slLinearizer or slTuner interface to a Simulink
model. You can plot the closed-loop response to a step disturbance at the plant input with
the following commands:

Tuy = getIOTransfer(T,'u','y');

stepplot(Tuy)

Analysis points are also useful to specify design requirements when tuning control
systems with the systune command (requires Robust Control Toolbox software). For
example, you can create a requirement that attenuates disturbances at the plant input
by a factor of 10 (20 dB) or more.

Req = TuningGoal.Rejection('u',10);

2 Model Creation

2-64

Specifying Analysis Points for MATLAB Models

Consider an LTI model of the block diagram in Figure 1.

G = tf(10,[1 3 10]);

C = pid(0.2,1.5);

T = feedback(G*C,1);

With this model, you can obtain the closed-loop response from r to y. However, you
cannot analyze the open-loop response at the plant input or simulate the rejection of a
step disturbance at the plant input. To enable such analysis, mark the signal u as an
analysis point by inserting an AnalysisPoint block between the plant and controller.

AP = AnalysisPoint('u');

T = feedback(G*AP*C,1);

The plant input, u, is now available for analysis. For instance, you can plot the open-loop
response at u.

bodeplot(getLoopTransfer(T,'u',-1))

Recall that the AnalysisPoint block includes an implied loop-opening switch that
behaves as shown in Figure 2 for analysis purposes. By default, this switch is closed
when computing closed-loop responses. For example, plot the closed-loop response to a
step disturbance at the plant input.

T.OutputName = 'y';

stepplot(getIOTransfer(T,'u','y'))

In creating the model T, you manually created the analysis point block AP and explicitly
included it in the feedback loop. When you combine models using the connect command,
you can instruct the software to insert analysis points automatically at the locations you
specify. For more information, see the connect reference page.

Specifying Analysis Points for Simulink Models

In Simulink, you can mark analysis points either explicitly in the block diagram, or
programmatically using the addPoint command for slLinearizer or slTuner
interfaces.

To mark an analysis point explicitly in the block diagram, right-click on the signal and
use the Linear Analysis Points menu. Select one of the closed-loop analysis types,
unless you also want to add a permanent opening at this location. The closed-loop
analysis types are Input Perturbation, Output Measurement, Sensitivity, and

 Marking Signals of Interest for Control System Analysis and Design

2-65

Complementary Sensitivity. The selected type does not affect analysis functions, such
as getIOTransfer, and tuning goals, such as TuningGoal.StepTracking.

Figure 3: Marking Analysis Points in a Simulink Model

2 Model Creation

2-66

To mark analysis points programmatically, use addPoint for the slLinearizer or
slTuner interfaces. Specify the point of interest using the block path, port number, and
bus element, if applicable. For example, consider the ex_scd_analysis_pts2 model,
illustrated in the next two figures.

Figure 4: Simple Feedback Loop in Simulink

Figure 5: 2DOF Controller Subsystem

Mark the u and Feedfordward term signals as analysis points.

open_system('ex_scd_analysis_pts2');

 Marking Signals of Interest for Control System Analysis and Design

2-67

ST = slLinearizer('ex_scd_analysis_pts2');

addPoint(ST,'ex_scd_analysis_pts2/2DOF Controller',1)

addPoint(ST,'ex_scd_analysis_pts2/2DOF Controller/Kff',1)

For convenience, you can also designate points of interest as analysis points using one of
the abbreviations shown in the following examples:

• Signal name:

addPoint(ST,{'u','r'})

• Block name and port number:

addPoint(ST,'ex_scd_analysis_pts2/Plant/1')

• Block name and outport name:

addPoint(ST,'ex_scd_analysis_pts2/2DOF Controller/Control')

• End of the full block name when unambiguous:

addPoint(ST,'Controller/1')

addPoint(ST,{'Setpoint','Noise'})

Finally, you can specify analysis points using linearization I/O objects (see linio):

ios = [...

 linio('ex_scd_analysis_pts2/Setpoint',1,'input'),...

 linio('ex_scd_analysis_pts2/Plant',1,'output')];

addPoint(ST,ios)

As when you use the Linear Analysis Points to mark analysis points,
analysis functions such as getIOTransfer and tuning goals such as
TuningGoal.StepTracking ignore the actual I/O type. However, an I/O type that
implies a loop opening, for instance loopbreak or openinput, imposes a permanent
loop opening at the point. This permanent opening remains in force throughout analysis
and tuning.

When you specify response I/Os in a tool such as Linear Analysis Tool or Control System
Tuner, the software creates analysis points as needed.

Referring to Analysis Points for Analysis and Tuning

Once you have marked analysis points, you can analyze the response at any of these
points using functions such as getIOTransfer and getLoopTransfer. You can also

2 Model Creation

2-68

create tuning goals that constrain the system response at these points. The tools to
perform these operations operate in a similar manner for models created at the command
line and models created in Simulink.

Use the getPoints function to get a list of all available analysis points.

getPoints(T) % Model created at the command line

getPoints(ST) % Model created in Simulink
®

For closed-loop models created at the command line, you can also use the model input
and output names as inputs to functions such as getIOTransfer.

stepplot(getIOTransfer(T,'u','y'))

Similarly, you can use these names to compute open-loop responses or create tuning
goals for systune.

L = getLoopTransfer(T,'u',-1);

R = TuningGoal.Margins('u',10,60);

Use the same method to refer to analysis points for models created in Simulink. In
Simulink models, for convenience, that you can use any unambiguous abbreviation of the
analysis point names returned by getPoints.

L = getLoopTransfer(ST,'u',-1);

stepplot(getIOTransfer(ST,'r','Plant'))

s = tf('s');

R = TuningGoal.Gain('Noise','Feedforw',1/(s+1));

Finally, if some analysis points are vector-valued signals or multichannel locations, you
can use indices to select particular entries or channels. For example, suppose u is a two-
entry vector in the model of Figure 2. You can compute the open-loop response of the
second channel and measure the impact of a disturbance on the first channel, as shown
here.

% Build closed-loop model of MIMO feedback loop

G = ss([-1 0.2;0 -2],[1 0;0.3 1],eye(2),0);

C = pid(0.2,0.5);

AP = AnalysisPoint('u',2);

T = feedback(G*AP*C,eye(2));

T.OutputName = 'y';

 Marking Signals of Interest for Control System Analysis and Design

2-69

L = getLoopTransfer(T,'u(2)',-1);

stepplot(getIOTransfer(T,'u(1)','y'))

When you create tuning goals in Control System Tuner, the software creates analysis
points as needed.

See Also
AnalysisPoint | getIOTransfer | getPoints

Related Examples
• “Control System with Multichannel Analysis Points”
• “Mark Analysis Points in Closed-Loop Models”

2 Model Creation

2-70

Model Arrays

What Are Model Arrays?

In many applications, it is useful to consider collections multiple model objects. For
example, you may want to consider a model with a parameter that varies across a range
of values, such as

sys1 = tf(1, [1 1 1]);

sys2 = tf(1, [1 1 2]);

sys3 = tf(1, [1 1 3]);

and so on. Model arrays are a convenient way to store and analyze such a collection.
Model arrays are collections of multiple linear models, stored as elements in a single
MATLAB array.

For all models collected in a single model array, the following attributes must be the
same:

• The number of inputs and outputs
• The sample time Ts
• The time unit TimeUnit

Uses of Model Arrays

Uses of model arrays include:

• Representing and analyzing sensitivity to parameter variations
• Validating a controller design against several plant models
• Representing linear models arising from the linearization of a nonlinear system at

several operating points
• Storing models obtained from several system identification experiments applied to

one plant

Using model arrays, you can apply almost all of the basic model operations that work
on single model objects to entire sets of models at once. Functions operate on arrays
model by model, allowing you to manipulate an entire collection of models in a vectorized
fashion. You can also use analysis functions such as bode, nyquist, and step to model

 Model Arrays

2-71

arrays to analyze multiple models simultaneously. You can access the individual models
in the collection through MATLAB array indexing.

Visualizing Model Arrays

To visualize the concept of a model array, consider the set of five transfer function models
shown below. In this example, each model has two inputs and two outputs. They differ by
parameter variations in the individual model components.

Just as you might collect a set of two-by-two matrices in a multidimensional array, you
can collect this set of five transfer function models as a list in a model array under one
variable name, say, sys. Each element of the model array is a single model object.

Visualizing Selection of Models From Model Arrays

The following illustration shows how indexing selects models from a one-dimensional
model array. The illustration shows a 1-by-5 array sysa of 2-input, 2-output transfer
functions.

2 Model Creation

2-72

The following illustration shows selection of models from the two-dimensional model
array m2d.

 Model Array with Single Parameter Variation

2-73

Model Array with Single Parameter Variation

This example shows how to create a one-dimensional array of transfer functions using
the stack command. One parameter of the transfer function varies from model to model
in the array. You can use such an array to investigate the effect of parameter variation
on your model, such as for sensitivity analysis.

Create an array of transfer functions representing the following low-pass filter at three
values of the roll-off frequency, a.

Create transfer function models representing the filter with roll-off frequency at a = 3, 5,
and 7.

F1 = tf(3,[1 3]);

F2 = tf(5,[1 5]);

F3 = tf(7,[1 7]);

Use the stack command to build an array.

Farray = stack(1,F1,F2,F3);

The first argument to stack specifies the array dimension along which stack builds an
array. The remaining arguments specify the models to arrange along that dimension.
Thus, Farray is a 3-by-1 array of transfer functions.

Concatenating models with MATLAB® array concatenation commands, instead of with
stack, creates multi-input, multi-output (MIMO) models rather than model arrays. For
example:

G = [F1;F2;F3];

creates a one-input, three-output transfer function model, not a 3-by-1 array.

When working with a model array that represents parameter variations, You can
associate the corresponding parameter value with each entry in the array. Set the
SamplingGrid property to a data structure that contains the name of the parameter
and the sampled parameter values corresponding with each model in the array. This
assignment helps you keep track of which model corresponds to which parameter value.

2 Model Creation

2-74

Farray.SamplingGrid = struct('alpha',[3 5 7]);

Farray

Farray(:,:,1,1) [alpha=3] =

 3

 s + 3

Farray(:,:,2,1) [alpha=5] =

 5

 s + 5

Farray(:,:,3,1) [alpha=7] =

 7

 s + 7

3x1 array of continuous-time transfer functions.

The parameter values in Farray.SamplingGrid are displayed along with the each
transfer function in the array.

Plot the frequency response of the array to examine the effect of parameter variation on
the filter behavior.

bodeplot(Farray)

 Model Array with Single Parameter Variation

2-75

When you use analysis commands such as bodeplot on a model array, the resulting
plot shows the response of each model in the array. Therefore, you can see the range of
responses that results from the parameter variation.

More About
• “Model Arrays” on page 2-70

2 Model Creation

2-76

Select Models from Array

This example shows how to select individual models or sets of models from a model array
using array indexing.

1 Load the transfer function array m2d into the MATLAB workspace.

load LTIexamples m2d

2 (Optional) Plot the step response of m2d.

step(m2d)

The step response shows that m2d contains six one-input, two-output models. The
step command plots all of the models in an array on a single plot.

3 (Optional) Examine the dimensions of m2d.

arraydim = size(m2d)

This command produces the result:

arraydim =

 2 1 2 3

 Select Models from Array

2-77

• The first entries of arraydim, 2 and 1, show that m2d is an array of two-output,
one-input transfer functions.

• The remaining entries in arraydim give the array dimensions of m2d, 2-by-3.

In general, the dimensions of a model array are [Ny,Nu,S1,...,Sk]. Ny and
Nu are the numbers of outputs and inputs of each model in the array. S1,...,Sk
are the array dimensions. Thus, Si is the number of models along the ith array
dimension.

4 Select the transfer function in the second row, first column of m2d.

To do so, use MATLAB array indexing.

sys = m2d(:,:,2,1)

Tip You can also access models using single index referencing of the array
dimensions. For example,

sys = m2d(:,:,4)

selects the same model as m2d(:,:,2,1).
5 Select the array of subsystems from the first input to the first output of each model

in m2d.

m11 = m2d(1,1,:,:)

6 (Optional) Plot the step response of m11.

step(m11)

2 Model Creation

2-78

The step response shows that m11 is an array of six single-input, single-output
(SISO) models.

Note: For frequency response data (FRD) models, the array indices can be followed
by the keyword 'frequency' and some expression selecting a subset of the
frequency points, as in:

sys(outputs,inputs,n1,...,nk,'frequency',SelectedFreqs)

More About
• “Model Arrays” on page 2-70

 Model Array with Variations in Two Parameters

2-79

Model Array with Variations in Two Parameters

This example shows how to create a two-dimensional (2-D) array of transfer functions
using for loops. One parameter of the transfer function varies in each dimension of the
array.

You can use the technique of this example to create higher-dimensional arrays with
variations of more parameters. Such arrays are useful for studying the effects of
multiple-parameter variations on system response.

The second-order single-input, single-output (SISO) transfer function

depends on two parameters: the damping ratio, , and the natural frequency, . If both
and vary, you obtain multiple transfer functions of the form:

where and represent different measurements or sampled values of the variable
parameters. You can collect all of these transfer functions in a single variable to create a
two-dimensional model array.

Preallocate memory for the model array. Preallocating memory is an optional step that
can enhance computation efficiency. To preallocate, create a model array of the required
size and initialize its entries to zero.

H = tf(zeros(1,1,3,3));

In this example, there are three values for each parameter in the transfer function H.
Therefore, this command creates a 3-by-3 array of single-input, single-output (SISO) zero
transfer functions.

Create arrays containing the parameter values.

zeta = [0.66,0.71,0.75];

w = [1.0,1.2,1.5];

2 Model Creation

2-80

Build the array by looping through all combinations of parameter values.

for i = 1:length(zeta)

 for j = 1:length(w)

 H(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);

 end

end

H is a 3-by-3 array of transfer functions. varies as you move from model to model along
a single column of H. The parameter varies as you move along a single row.

Plot the step response of H to see how the parameter variation affects the step response.

stepplot(H)

 Model Array with Variations in Two Parameters

2-81

You can set the SamplingGrid property of the model array to help keep track of which
set of parameter values corresponds to which entry in the array. To do so, create a grid of
parameter values that matches the dimensions of the array. Then, assign these values to
H.SamplingGrid with the parameter names.

[zetagrid,wgrid] = ndgrid(zeta,w);

H.SamplingGrid = struct('zeta',zetagrid,'w',wgrid);

When you display H, the parameter values in H.SamplingGrid are displayed along with
the each transfer function in the array.

More About
• “Model Arrays” on page 2-70

2 Model Creation

2-82

Study Parameter Variation by Sampling Tunable Model

This example shows how to sample a parametric model of a second-order filter across a
grid of parameter values using replaceBlock.

Consider the second-order filter represented by:

Sample this filter at varying values of the damping constant and the natural frequency
. Create a parametric model of the filter by using tunable elements for and .

wn = realp('wn',3);

zeta = realp('zeta',0.8);

F = tf(wn^2,[1 2*zeta*wn wn^2])

F =

 Generalized continuous-time state-space model with 1 outputs, 1 inputs, 2 states, and the following blocks:

 wn: Scalar parameter, 5 occurrences.

 zeta: Scalar parameter, 1 occurrences.

Type "ss(F)" to see the current value, "get(F)" to see all properties, and "F.Blocks" to interact with the blocks.

F is a genss model with two tunable Control Design Blocks, the realp blocks wn and
zeta. The blocks wn and zeta have initial values of 3 and 0.8, respectively.

Sample F over a 2-by-3 grid of (wn, zeta) values.

wnvals = [3;5];

zetavals = [0.6 0.8 1.0];

Fsample = replaceBlock(F,'wn',wnvals,'zeta',zetavals);

Fsample is a 2-by-3 array of state-space models. Each entry in the array is a state-space
model that represents F evaluated at the corresponding (wn, zeta) pair. For example,
Fsample(:,:,2,3) has wn = 5 and zeta = 1.0.

Examine the step response of Fsample.

 Study Parameter Variation by Sampling Tunable Model

2-83

stepplot(Fsample)

The step response plots show the variation in the natural frequency and damping
constant across the six models in the array Fsample.

You can set the SamplingGrid property of the model array to help keep track of which
set of parameter values corresponds to which entry in the array. To do so, create a grid of
parameter values that matches the dimensions of the array. Then, assign these values to
Fsample.SamplingGrid with the parameter names.

[wngrid,zetagrid] = ndgrid(wnvals,zetavals);

Fsample.SamplingGrid = struct('wn',wngrid,'zeta',zetagrid);

2 Model Creation

2-84

When you display Fsample, the parameter values in Fsample.SamplingGrid are
displayed along with the each transfer function in the array.

More About
• “Models with Tunable Coefficients”

 Linear Parameter-Varying Models

2-85

Linear Parameter-Varying Models

In this section...

“What are Linear Parameter-Varying Models?” on page 2-85
“Regular vs. Irregular Grids” on page 2-88
“Use Model Arrays to Create Linear Parameter-Varying Models” on page 2-90
“Approximate Nonlinear Systems using LPV Models” on page 2-90
“Applications of Linear Parameter-Varying Models” on page 2-91

What are Linear Parameter-Varying Models?

A linear parameter-varying (LPV) system is a linear state-space model whose dynamics
vary as a function of certain time-varying parameters called scheduling parameters. In
MATLAB, an LPV model is represented in a state-space form using coefficients that are
parameter dependent.

Mathematically, an LPV system is represented as:

dx t A p x t B p u t

y t C p x t D p u t

x x

() = () () + () ()

() = () () + () ()

() =0
0

where

• u(t) are the inputs
• y(t) the outputs
• x(t) are the model states with initial value x0
• dx t() is the state derivative vector &x for continuous-time systems and the state

update vector x t T+()D for discrete-time systems. ΔT is the sample time.

• A(p), B(p), C(p) and D(p) are the state-space matrices parameterized by the
scheduling parameter vector p.

2 Model Creation

2-86

• The parameters p = p(t) are measurable functions of the inputs and the states of
the model. They can be a scalar quantity or a vector of several parameters. The set
of scheduling parameters define the scheduling space over which the LPV model is
defined.

Grid-Based LPV Model

A common way of representing LPV models is as an interpolated array of linear state-
space models. A certain number of points in the scheduling space are selected, usually
forming a regular grid. An LTI system is assigned to each point, representing the
dynamics in the local vicinity of that point. The dynamics at scheduling locations in
between the grid points is obtained by interpolation of LTI systems at neighboring
points.

For example, the aerodynamic behavior of an aircraft is often scheduled over a grid of
incidence angle (α) and wind speed (V) values. For each scheduling parameter, a range of
values is chosen, such as α = 0:5:20 degrees, V = 700:100:1400 m/s. For each combination
of (α,V) values, a linear approximation of the aircraft behavior is obtained. The local
models are connected as shown in the following figure:

 Linear Parameter-Varying Models

2-87

Each donut represents a local LTI model, and the connecting curves represent the
interpolation rules. The abscissa and ordinate of the surface are the scheduling
parameters (α, V).

This form is sometimes called the grid-based LPV representation. This is the form used
by the LPV System block. For meaningful interpolations of system matrices, all the local
models must use the same state basis.

Affine Form of LPV Model

The LPV system representation can be extended to allow offsets in dx, x, u and y
variables. This form is known as affine form of the LPV model. Mathematically, the
following represents an LPV system:

dx t A p x t B p u t dx p A p x p B p u p

y t C p

() = () () + () () + () - () () -()
() = ()

() ()

xx t D p u t y p C p x p D p u p

x x

() + () () + () - () () -()

() =

() ()

0 0

dx p x p u p y p() () () (), , , are the offsets in the values of dx(t), x(t), u(t) and y(t) at
a given parameter value p = p(t).

You obtain such representations of the linear system array by linearizing a Simulink
model over a batch of operating points (see “Batch Linearization” in Simulink Control
Design documentation.) The offsets then correspond to the operating points at which you
linearized the model.

In the affine representation, the linear model at a given point p = p* in the scheduling
space is given by:

d x t p A p x t p B p u t p

y t p C p x t p

D D D

D D

(,) , ,

, ,

* * * * *

* * *

= () () + () ()

() = () ()) + () ()D p u t p* *,D

The states of this linear model are related to the states of the overall LPV model

(Equation 2-2) by Dx t p x t x p, * *() = () - () . Similarly, Dy t p y t y p, * *() = () - () and

Du t p u t u p, * *() = () - () .

2 Model Creation

2-88

Regular vs. Irregular Grids

Consider a system that uses two scheduling parameters – α and β. When α and β vary
monotonically, a regular grid is formed, as shown in the next figure. The state space
array contains a value at every combination of α and β values. Regular grid does not
imply uniform spacing between values.

When parameters co-vary, i.e., α and β increase together, an irregular grid is formed. The
system array parameters are available only along the diagonal in the parameter plane.

 Linear Parameter-Varying Models

2-89

If certain samples are missing from an otherwise regular grid, the grid is considered to be
irregular.

2 Model Creation

2-90

Use Model Arrays to Create Linear Parameter-Varying Models

The array of state-consistent linear models that define an LPV model are represented by
an array of state-space model objects. For more information on model arrays, see “Model
Arrays”.

The system array size is equal to the grid size in scheduling space. In the aircraft
example, α takes 5 values in the 0–20 degrees range and V takes 8 values in the 700–
1400 m/s range. If you define a linear model at every combination of (α,V) values (i.e., the
grid is regular), the grid size is 5-by-8. Therefore, the model array size must be 5-by-8.

The information about scheduling parameters is attached to the linear model array
using its SamplingGrid property. The value of the SamplingGrid property must be
a structure with as many fields as there are scheduling parameters. For each field,
the value must be set to all the values assumed by the corresponding variable in the
scheduling space.

For the aircraft example, you can define the SamplingGrid property as:

Alpha = 0:5:20;

V = 700:100:1400;

[Alpha_Grid,V_Grid] = ndgrid(Alpha, V);

linsysArray.SamplingGrid = struct('Alpha',Alpha_Grid,'V',V_Grid);

Approximate Nonlinear Systems using LPV Models

In the same way as a linear model provides the approximation of system behavior at a
given operating condition, an LPV model provides the approximation of the behavior over
a span on operating conditions. A common approach for constructing the LPV model is by
batch trimming and linearization, followed by stacking the local models in a state-space
model array.

Note: When obtaining linear models by linearization, do not reduce or alter the state
variables used by the models.

The operating region is usually of a high dimension because it consists of all the input
and state variables. Generating or interpolating local models in such high-dimensional
spaces is usually infeasible. A simpler approach is to use a small set of scheduling
parameters as a proxy for the operating space variables. The scheduling parameters

 Linear Parameter-Varying Models

2-91

are derived from the inputs and state variables of the original system. You must choose
the values carefully so that for a fixed value of the scheduling parameters, the system
behavior is approximately linear. This approach is not always possible.

Consider a nonlinear system described by the following equations:

&

&

x x x

x x x u

y x

1 1

2

2

2

2 1 2

1

2 3 2

2

= +

= - - +

= +

Suppose you use p t x() = &1 as a scheduling variable. At a given time instant t = t0, you
have:

& &

&

x x t x x t x x t

x x x u

y x

1 1 0 1 2 0 2 1 0

2 1 2

1

2 2

2 3 2

2

ª () + () - ()

= - - +

= +

Thus, the dynamics are linear (affine) in the neighborhood of a given value of &x . The
approximation holds for all time spans and values of input u as long as of &x does not
deviate much from its nominal value at sampling point t0. Note that scheduling on input
u or states x1 or x2 does not help locally linearize the system. Therefore, they are not good
candidates for scheduling parameters.

For an example of this approach, see “Approximating Nonlinear Behavior using an Array
of LTI Systems”.

Applications of Linear Parameter-Varying Models

• “Modeling Multimode Dynamics” on page 2-91
• “Proxy Modeling for Faster Simulations” on page 2-92

Modeling Multimode Dynamics

You can use LPV models to represent systems that exhibit multiple modes (regimes)
of operation. Examples of such systems include colliding bodies, systems controlled by
operator switches, and approximations of systems affected by dry friction and hysteresis
effects. For an example, see “Using LTI Arrays for Simulating Multi-Mode Dynamics”.

2 Model Creation

2-92

Proxy Modeling for Faster Simulations

This approach is sometimes useful for generating surrogate models that you can use in
place of the original system for enabling faster simulations, reducing memory footprint
of target hardware code, and hardware-in-loop (HIL) simulations. You can also use
surrogate models of this type for designing gain-scheduled controllers and for initializing
the parameter estimation tasks in Simulink. For an example of approximating a general
nonlinear system behavior by an LPV model, see “Approximating Nonlinear Behavior
using an Array of LTI Systems”.

LPV models can help speed up the simulation of physical component based systems, such
as those built using SimMechanics™ and SimPowerSystems™ software. For an example
of this approach, see “LPV Approximation of a Boost Converter Model”.

See Also
LPV System

Related Examples
• “Using LTI Arrays for Simulating Multi-Mode Dynamics”
• “Approximating Nonlinear Behavior using an Array of LTI Systems”
• “LPV Approximation of a Boost Converter Model”

 Using LTI Arrays for Simulating Multi-Mode Dynamics

2-93

Using LTI Arrays for Simulating Multi-Mode Dynamics

This example shows how to construct a Linear Parameter Varying (LPV) representation
of a system that exhibits multi-mode dynamics.

Introduction

We often encounter situations where an elastic body collides with, or presses against, a
possibly elastic surface. Examples of such situations are:

• An elastic ball bouncing on a hard surface.
• An engine throttle valve that is constrained to close to no more than using a hard

spring.
• A passenger sitting on a car seat made of polyurethane foam, a viscoelastic material.

In these situations, the motion of the moving body exhibits different dynamics when it
is moving freely than when it is in contact with a surface. In the case of a bouncing ball,
the motion of the mass can be described by rigid body dynamics when it is falling freely.
When the ball collides and deforms while in contact with the surface, the dynamics have
to take into account the elastic properties of the ball and of the surface. A simple way of
modeling the impact dynamics is to use lumped mass spring-damper descriptions of the
colliding bodies. By adjusting the relative stiffness and damping coefficients of the two
bodies, we can model the various situations described above.

Modeling Bounce Dynamics

Figure 1 shows a mass-spring-damper model of the system. Mass 1 is falling freely under
the influence of gravity. Its elastic properties are described by stiffness constant and
damping coefficient . When this mass hits the fixed surface, the impact causes Mass 1
and Mass 2 to move downwards together. After a certain "residence time" during which
the Mass 1 deforms and recovers, it loses contact with Mass 2 completely to follow a
projectile motion. The overall dynamics are thus broken into two distinct modes - when
the masses are not in contact and when they are moving jointly.

Figure 1: Elastic body bouncing on a fixed elastic surface.

2 Model Creation

2-94

The unstretched (load-free) length of spring attached to Mass 1 is , while that of Mass
2 is . The variables and denote the positions of the two masses. When
the masses are not in contact ("Mode 1"), their motions are governed by the following
equations:

with initial conditions , , , . is the height
from which Mass 1 is originally dropped. is the initial location of Mass 2 which
corresponds to an unstretched state of its spring.

When Mass 1 touches Mass 2 ("Mode 2"), their displacements and velocities get
interlinked. The governing equations in this mode are:

with , where is the time at which Mass 1 first touches Mass 2.

LPV Representation

The governing equations are linear and time invariant. However, there are two distinct
behavioral modes corresponding to different equations of motion. Both modes are
governed by sets of second order equations. If we pick the positions and velocities of
the masses as state variables, we can represent each mode by a 4th order state-space
equation.

In the state-space view, it becomes possible to treat the two modes as a single system
whose coefficients change as a function of a certain condition which determines
which mode is active. The condition is, of course, whether the two masses are moving
freely or jointly. Such a representation, where the coefficients of a linear system are
parameterized by an external but measurable parameter is called a Linear Parameter
Varying (LPV) model. A common representation of an LPV model is by means of an array

 Using LTI Arrays for Simulating Multi-Mode Dynamics

2-95

of linear state-space models and a set of scheduling parameters that dictate the rules for
choosing the correct model under a given condition. The array of linear models must all
be defined using the same state variables.

For our example, we need two state-space models, one for each mode of operation. We
also need to define a scheduling variable to switch between them. We begin by writing
the above equations of motion in state-space form.

Define values of masses and their spring constants.

m1 = 7; % first mass (g)

k1 = 100; % spring constant for first mass (g/s^2)

c1 = 2; % damping coefficient associated with first mass (g/s)

m2 = 20; % second mass (g)

k2 = 300; % spring constant for second mass (g/s^2)

c2 = 5; % damping coefficient associated with second mass (g/s)

g = 9.81; % gravitational acceleration (m/s^2)

a1 = 12; % uncompressed lengths of spring 1 (mm)

a2 = 20; % uncompressed lengths of spring 2 (mm)

h1 = 100; % initial height of mass m1 (mm)

h2 = a2; % initial height of mass m2 (mm)

First mode: state-space representation of dynamics when the masses are not in contact.

A11 = [0 1; 0 0];

B11 = [0; -g];

C11 = [1 0];

D11 = 0;

A12 = [0 1; -k2/m2, -c2/m2];

B12 = [0; -g+(k2*a2/m2)];

C12 = [1 0];

D12 = 0;

A1 = blkdiag(A11, A12);

B1 = [B11; B12];

C1 = blkdiag(C11, C12);

D1 = [D11; D12];

sys1 = ss(A1,B1,C1,D1);

2 Model Creation

2-96

Second mode: state-space representation of dynamics when the masses are in contact.

A2 = [0 1, 0, 0; ...

 -k1/m1, -c1/m1, k1/m1, c1/m1;...

 0, 0, 0, 1; ...

 k1/m2, c1/m2, -(k1+k2)/m2, -(c1+c2)/m2];

B2 = [0; -g+k1*a1/m1; 0; -g+(k2/m2*a2)-(k1/m2*a1)];

C2 = [1 0 0 0; 0 0 1 0];

D2 = [0;0];

sys2 = ss(A2,B2,C2,D2);

Now we stack the two models sys1 and sys2 together to create a state-space array.

sys = stack(1,sys1,sys2);

Use the information on whether the masses are moving freely or jointly for scheduling.
Let us call this parameter "FreeMove" which takes the value of 1 when masses are
moving freely and 0 when they are in contact and moving jointly. The scheduling
parameter information is incorporated into the state-space array object (sys) by using its
"SamplingGrid" property:

sys.SamplingGrid = struct('FreeMove',[1; 0]);

Whether the masses are in contact or not is decided by the relative positions of the two
masses; when , the masses are not in contact.

Simulation of LPV Model in Simulink

The state-space array sys has the necessary information to represent an LPV model.
We can simulate this model in Simulink using the "LPV System" block from the Control
System Toolbox™'s block library.

Open the preconfigured Simulink model LPVBouncingMass.slx

open_system('LPVBouncingMass')

open_system('LPVBouncingMass/Bouncing Mass Model','mask')

 Using LTI Arrays for Simulating Multi-Mode Dynamics

2-97

The block called "Bouncing Mass Model" is an LPV System block. Its parameters are
specified as follows:

• For "State-space array" field, specify the state-space model array sys that was
created above.

• For "Initial state" field, specify the initial positions and velocities of the two masses.
Note that the state vector is: . Specify its value as [h1 0 h2 0]'.

• Under the "Scheduling" tab, set the "Interpolation method" to "Nearest". This choice
causes only one of the two models in the array to be active at any time. In our
example, the behavior modes are mutually exclusive.

• Under the "Outputs" tab, uncheck all the checkboxes for optional output ports. We
will be observing only the positions of the two masses.

The constant block outputs a unit value. This serves as the input to the model and is
supplied from the first input port of the LPV block. The block has only one output port
which outputs the positions of the two masses as a 2-by-1 vector.

The second input port of the LPV block is for specifying the scheduling signal. As
discussed before, this signal represents the scheduling parameter "FreeMove" and takes
discrete values 0 (masses in contact) or 1 (masses not in contact). The value of this
parameter is computed as a function of the block's output signal. This computation is
performed by the blocks with cyan background color. We take the difference between the
two outputs (after demuxing) and compare the result to the unstretched length of spring
attached to Mass 1. The resulting Boolean result is converted into a double signal which
serves as the scheduling parameter value.

We are now ready to perform the simulation.

2 Model Creation

2-98

open_system('LPVBouncingMass/Scope')

sim('LPVBouncingMass')

The yellow curve shows the position of Mass 1 while the magenta curve shows the
position of Mass 2. At the start of simulation, Mass 1 undergoes free fall until it hits
Mass 2. The collision causes the Mass 2 to be displaced but it recoils quickly and
bounces Mass 1 back. The two masses are in contact for the time duration where

. When the masses settle down, their equilibrium values are determined
by the static settling due to gravity. For example, the absolute location of Mass 1 is

Conclusions

This example shows how a Linear Parameter Varying model can be constructed by using
an array of state-space models and suitable scheduling variables. The example describes

 Using LTI Arrays for Simulating Multi-Mode Dynamics

2-99

the case of mutually exclusive modes, although a similar approach can be used in cases
where the dynamics behavior at a given value of scheduling parameters is influenced by
several linear models.

The LPV System block facilitates the simulation of parameter varying systems. The block
also supports code generation for various hardware targets.

Working with Linear Models

3

Data Manipulation

• “Model Properties” on page 3-2
• “Extract Model Coefficients” on page 3-5
• “Attach Metadata to Models” on page 3-8
• “Query Model Characteristics” on page 3-13
• “Customize Model Display” on page 3-16

3 Data Manipulation

3-2

Model Properties

In this section...

“Model Properties” on page 3-2
“Specify Model Properties at Model Creation” on page 3-2
“Examine and Specify Properties of an Existing Model” on page 3-2

Model Properties

Model properties are data fields that let you specify model attributes, such as coefficients,
sample time, and metadata such as channel names.

For help on the properties associated with each model type, see the corresponding
reference page. Alternatively, enter help modeltype.propertyname at the command
line. For example:

help ss.StateName

Related Examples

• “Examine and Specify Properties of an Existing Model” on page 3-2
• “Specify Model Properties at Model Creation” on page 3-2

Specify Model Properties at Model Creation

This example shows how to specify transfer function model properties when you create
the model. You can use the technique of this example to access and set properties of any
type of model.

To specify model properties at model creation, use Name,Value pair syntax. For
example, assign a transport delay and an output name to a new transfer function model:

H = tf(1,[1 10],'ioDelay',6.5,'OutputName','velocity')

Examine and Specify Properties of an Existing Model

This example shows how to examine and specify properties of an existing ss model using
get, set, and dot notation. You can use the techniques of this example to examine and
specify properties of any type of model.

 Model Properties

3-3

1 Load an existing model object.

load PadeApproximation1 sys;

sys is a state-space (ss) model.
2 Examine the current property values.

get(sys)

This command displays all the properties of sys.

 a: [2x2 double]

 b: [2x1 double]

 c: [0.5000 0.1000]

 d: 0

 e: []

 Scaled: 0

 StateName: {2x1 cell}

 StateUnit: {2x1 cell}

 InternalDelay: 3.4000

 InputDelay: 0

 OutputDelay: 1.5000

 Ts: 0

 TimeUnit: 'seconds'

 InputName: {''}

 InputUnit: {''}

 InputGroup: [1x1 struct]

 OutputName: {''}

 OutputUnit: {''}

 OutputGroup: [1x1 struct]

 Name: ''

 Notes: {}

 UserData: []

3 Specify input delay and channel names.

You can use dot notation to directly reference property values.

sys.InputDelay = 4.2;

sys.InputName = 'thrust';

sys.OutputName = 'velocity';

Alternatively, you can use the set command to specify property values.

set(sys,'InputDelay',4.2,'InputName','thrust',...

3 Data Manipulation

3-4

 'OutputName','velocity');

Caution Changing certain properties, such as Ts and TimeUnits, can cause
undesirable changes in system behavior. See the property descriptions in the model
reference pages for more information.

 Extract Model Coefficients

3-5

Extract Model Coefficients

In this section...

“Functions for Extracting Model Coefficients” on page 3-5
“Extracting Coefficients of Different Model Type” on page 3-5
“Extract Numeric Model Data and Time Delay” on page 3-6
“Extract PID Gains from Transfer Function” on page 3-7

Functions for Extracting Model Coefficients

Control System Toolbox software includes several commands for extracting model
coefficients such as transfer function numerator and denominator coefficients, state-
space matrices, and proportional-integral-derivative (PID) gains.

The following commands are available for data extraction.

Command Result

tfdata Extract transfer function coefficients
zpkdata Extract zero and pole locations and system gain
ssdata Extract state-space matrices
dssdata Extract descriptor state-space matrices
frdata Extract frequency response data from frd model
piddata Extract parallel-form PID data
pidstddata Extract standard-form PID data
get Access all model property values

Extracting Coefficients of Different Model Type

When you use a data extraction command on a model of a different type, the software
computes the coefficients of the target model type. For example, if you use zpkdata on
a ss model, the software converts the model to zpk form and returns the zero and pole
locations and system gain.

3 Data Manipulation

3-6

Extract Numeric Model Data and Time Delay

This example shows how to extract transfer function numerator and denominator
coefficients using tfdata.

1 Create a first-order plus dead time transfer function model.

 H = exp(-2.5*s)/(s+12);

2 Extract the numerator and denominator coefficients.

[num,den] = tfdata(H,'v')

The variables num and den are numerical arrays. Without the 'v' flag, tfdata
returns cell arrays.

Note: For SISO transfer function models, you can also extract coefficients using:

num = H.num{1};

den = H.den{1};

3 Extract the time delay.

a Determine which property of H contains the time delay.

In a SISO tf model, you can express a time delay as an input delay, an output
delay, or a transport delay (I/O delay).

get(H)

This command returns:

 num: {[0 1]}

 den: {[1 12]}

 Variable: 's'

 ioDelay: 0

 InputDelay: 0

 OutputDelay: 2.5000

 Ts: 0

 TimeUnit: 'seconds'

 InputName: {''}

 InputUnit: {''}

 InputGroup: [1x1 struct]

 OutputName: {''}

 Extract Model Coefficients

3-7

 OutputUnit: {''}

 OutputGroup: [1x1 struct]

 Name: ''

 Notes: {}

 UserData: []

The time delay is stored in the OutputDelay property.
b Extract the output delay.

delay = H.OutputDelay;

Extract PID Gains from Transfer Function

This example shows how to extract PID (proportional-integral-derivative) gains from a
transfer function using piddata. You can use the same steps to extract PID gains from a
model of any type that represents a PID controller, using piddata or pidstddata.

1 Create a transfer function that represents a PID controller with a first-order filter on
the derivative term.

 Czpk = zpk([-6.6,-0.7],[0,-2],0.2)

2 Obtain the PID gains and filter constant.

[Kp,Ki,Kd,Tf] = piddata(Czpk)

This command returns the proportional gain Kp, integral gain Ki, derivative gain Kd,
and derivative filter time constant Tf. Because piddata automatically computes the
PID controller parameters, you can extract the PID coefficients without creating a
pid model.

More About

• “PID Controllers”

3 Data Manipulation

3-8

Attach Metadata to Models

In this section...

“Specify Model Time Units” on page 3-8
“Interconnect Models with Different Time Units” on page 3-8
“Specify Frequency Units of Frequency-Response Data Model” on page 3-9
“Extract Subsystems of Multi-Input, Multi-Output (MIMO) Models” on page 3-10
“Specify and Select Input and Output Groups” on page 3-11

Specify Model Time Units

This example shows how to specify time units of a transfer function model.

The TimeUnit property of the tf model object specifies units of the time variable, time
delays (for continuous-time models), and the sample time Ts (for discrete-time models).
The default time units is seconds.

Create a SISO transfer function model sys
s

s s

=
+

+ +

4 2

3 10
2

 with time units in milliseconds:

num = [4 2];

den = [1 3 10];

sys = tf(num,den,'TimeUnit','milliseconds');

You can specify the time units of any dynamic system in a similar way.

The system time units appear on the time- and frequency-domain plots. For multiple
systems with different time units, the units of the first system are used if the time and
frequency units in the “Toolbox Preferences Editor” are auto.

Note: Changing the TimeUnit property changes the system behavior. If you want to use
different time units without modifying system behavior, use chgTimeUnit.

Interconnect Models with Different Time Units

This example shows how to interconnect transfer function models with different time
units.

 Attach Metadata to Models

3-9

To interconnect models using arithmetic operations or interconnection commands, the
time units of all models must match.

1 Create two transfer function models with time units of milliseconds and seconds,
respectively.

sys1 = tf([1 2],[1 2 3],'TimeUnit','milliseconds');

sys2 = tf([4 2],[1 3 10]);

2 Change the time units of sys2 to milliseconds.

sys2 = chgTimeUnit(sys2,'milliseconds');

3 Connect the systems in parallel.

sys = sys1+sys2;

Specify Frequency Units of Frequency-Response Data Model

This example shows how to specify units of the frequency points of a frequency-response
data model.

The FrequencyUnit property specifies units of the frequency vector in the Frequency
property of the frd model object. The default frequency units are rad/TimeUnit, where
TimeUnit is the time unit specified in the TimeUnit property.

Create a SISO frequency-response data model with frequency data in GHz.

load AnalyzerData;

sys = frd(resp,freq,'FrequencyUnit','GHz');

You can independently specify the units in which you measure the frequency points and
sample time in the FrequencyUnit and TimeUnit properties, respectively. You can also
specify the frequency units of a genfrd in a similar way.

The frequency units appear on the frequency-domain plots. For multiple systems with
different frequency units, the units of the first system are used if the frequency units in
the “Toolbox Preferences Editor” is auto.

Note: Changing the FrequencyUnit property changes the system behavior. If you want to
use different frequency units without modifying system behavior, use chgFreqUnit.

3 Data Manipulation

3-10

Extract Subsystems of Multi-Input, Multi-Output (MIMO) Models

This example shows how to extract subsystems of a MIMO model using MATLAB
indexing and using channel names.

Extracting subsystems is useful when, for example, you want to analyze a portion of a
complex system.

Create a MIMO transfer function.

G1 = tf(3,[1 10]);

G2 = tf([1 2],[1 0]);

G = [G1,G2];

Extract the subsystem of G from the first input to all outputs.

Gsub = G(:,1);

This command uses MATLAB indexing to specify a subsystem as G(out,in), where out
specifies the output indices and in specifies the input indices.

Using channel names, you can use MATLAB indexing to extract all the dynamics
relating to a particular channel. By using this approach, you can avoid having to keep
track of channel order in a complex MIMO model.

Assign names to the model inputs.

G.InputName = {'temperature';'pressure'};

Because G has two inputs, use a cell array of two strings to specify the channel names.

Extract the subsystem of G that contains all dynamics from the 'temperature' input to
all outputs.

Gt = G(:,'temperature');

Gt is the same subsystem as Gsub.

Note: When you extract a subsystem from a state-space (ss) model, the resulting state-
space model may not be minimal. Use sminreal to eliminate unnecessary states in the
subsystem.

 Attach Metadata to Models

3-11

Specify and Select Input and Output Groups

This example shows how to specify groups of input and output channels in a model object
and extract subsystems using the groups.

Input and output groups are useful for keeping track of inputs and outputs in complex
MIMO models.

1 Create a state-space model with three inputs and four outputs.

H = rss(3,4,3);

2 Group the inputs as follows:

• Inputs 1 and 2 in a group named controls
• Outputs 1 and 3 to a group named temperature
• Outputs 1, 3, and 4 to a group named measurements

H.InputGroup.controls = [1 2];

H.OutputGroup.temperature = [1 3];

H.OutputGroup.measurements = [1 3 4];

InputGroup and OutputGroup are structures. The name of each field in the
structure is the name of the input or output group. The value of each field is a vector
that identifies the channels in that group.

3 Extract the subsystem corresponding to the controls inputs and the temperature
outputs.

You can use group names to index into subsystems.

Hc = H('temperature','controls')

Hc is a two-input, two-output ss model containing the I/O channels from the
'controls' input to the 'temperature' outputs.

You can see the relationship between H and the subsystem Hc in this illustration.

3 Data Manipulation

3-12

H

1

2

3

1

2

3

4

controls temperature

Hc

 Query Model Characteristics

3-13

Query Model Characteristics

In this section...

“Query Model Dynamics” on page 3-13
“Query Array Size” on page 3-14

How to query model characteristics such as stability, time domain, and number of inputs
and outputs.

Query Model Dynamics

This example shows how to query model dynamics such as stability, time domain, and
model order. You can use the techniques of this example on type of model.

1 Load a saved state-space model.

load queryexample.mat T;

2 Query whether T has stable dynamics.

isstable(T)

The isstable command returns a Boolean value of 1 (true) if all system poles are in
the open left-half plane (for continuous-time models) or inside the open unit disk (for
discrete-time models). Otherwise, isstable returns 0 (false).

3 Query whether T has any time delays.

hasdelay(T)

This command returns 1, which indicates that T has a time delay. For a state-space
model, time delay can be stored as input delay, output delay, or internal delay. Use
get(T) to determine which properties of T hold the time delay.

4 Query whether T is proper.

isproper(T)

This command returns 1, if the system has relative degree ≤ 0.
5 Query the order of T.

order(T)

3 Data Manipulation

3-14

For a state-space model, order returns the number of states. For a tf or zpk model,
the order is the number of states required for a state-space realization of the system.

6 Query whether T is a discrete-time model.

isdt(T)

This command returns 1, indicating that T is a discrete-time model. Similarly, you
can use isct to query whether T is a continuous-time model.

Query Array Size

This example shows how to query the size of model arrays, including the number of
inputs and outputs and the number of models in an array.

You can also use these commands on individual models.

1 Load a saved model array.

load queryexample sysarr

2 Query the array dimensions.

size(sysarr)

This command displays the array size, and the number of inputs, outputs, and states
of the models in the array.

Alternatively, to obtain the array dimensions as a numeric array, use size with an
output argument.

dims = size(sysarr)

This command produces the result:

dims =

 3 1 2 4

The first two entries 3,1 are the number of outputs and inputs, respectively. The
remaining entries 2,4 are the array dimensions.

Tip To query the number of array dimensions, use ndims.

 Query Model Characteristics

3-15

3 Query the number of models in the array.

N = nmodels(sysarr)

Because sysarr is a 2-by-4 array, this command returns a result of 2 × 4 = 8.
4 Query whether the models in sysarr are single-input, single-output (SISO).

issiso(sysarr)

The command issiso returns a Boolean value of 1 (true) if the models in the array
are SISO, and 0 (false) if the models are not SISO.

5 Query the number of inputs and outputs in the models in the array using iosize.

ios = iosize(sysarr)

This command returns a numeric array containing the number of outputs and inputs
of the models in the array.

Related Examples

• “Select Models from Array”

3 Data Manipulation

3-16

Customize Model Display

How to customize the MATLAB screen display of transfer function models.

In this section...

“Configure Transfer Function Display Variable” on page 3-16
“Configure Display Format of Transfer Function in Factorized Form” on page 3-17

Configure Transfer Function Display Variable

This example shows how to configure the display variable of transfer function (tf)
models.

You can use the same steps to configure the display variable of transfer function models
in factorized form (zpk models).

By default, tf and zpk models are displayed in terms of s in continuous time and z in
discrete time. Use the Variable property change the display variable to 'p' (equivalent
to 's'), 'q' (equivalent to 'z'), 'z^-1', or 'q^-1'.

1
Create the discrete-time transfer function H z

z

z z
() =

-

- +

1

3 2
2

with a sample time of 1 s.

 H = tf([1 -1],[1 -3 2],0.1)

H =

 z - 1

 z^2 - 3 z + 2

Sample time: 0.1 seconds

Discrete-time transfer function.

The default display variable is z.
2 Change the display variable to q^-1.

 Customize Model Display

3-17

H.Variable = 'q^-1'

H =

 q^-1 - q^-2

 1 - 3 q^-1 + 2 q^-2

Sample time: 0.1 seconds

Discrete-time transfer function.

When you change the Variable property, the software computes new coefficients
and displays the transfer function in terms of the new variable. The num and den
properties are automatically updated with the new coefficients.

Tip Alternatively, you can directly create the same transfer function expressed in terms
of 'q^-1'.

H = tf([0 1 -1],[1 -3 2],0.1,'Variable','q^-1');

For the inverse variables 'z^-1' and 'q^-1', tf interprets the numerator and
denominator arrays as coefficients of ascending powers of 'z^-1' or 'q^-1'.

Configure Display Format of Transfer Function in Factorized Form

This example shows how to configure the display of transfer function models in factorized
form (zpk models).

You can configure the display of the factorized numerator and denominator polynomials
to highlight:

• The numerator and denominator roots
• The natural frequencies and damping ratios of each root
• The time constants and damping ratios of each root

See the DisplayFormat property on the zpk reference page for more information about
these quantities.

1 Create a zpk model having a zero at s = 5, a pole at s = –10, and a pair of complex
poles at s = –3 ± 5i.

3 Data Manipulation

3-18

H = zpk(5,[-10,-3-5*i,-3+5*i],10)

H =

 10 (s-5)

 (s+10) (s^2 + 6s + 34)

Continuous-time zero/pole/gain model.

The default display format, 'roots', displays the standard factorization of the
numerator and denominator polynomials.

2 Configure the display format to display the natural frequency of each polynomial
root.

 H.DisplayFormat = 'frequency'

H =

 -0.14706 (1-s/5)

 (1+s/10) (1 + 1.029(s/5.831) + (s/5.831)^2)

Continuous-time zero/pole/gain model.

You can read the natural frequencies and damping ratios for each pole and zero from
the display as follows:

• Factors corresponding to real roots are displayed as (1 – s/ω0). The variable ω0 is
the natural frequency of the root. For example, the natural frequency of the zero
of H is 5.

• Factors corresponding to complex pairs of roots are displayed as 1 – 2ζ(s/ω0) +
(s/ω0)2. The variable ω0 is the natural frequency, and ζ is the damping ratio of the
root. For example, the natural frequency of the complex pole pair is 5.831, and
the damping ratio is 1.029/2.

3 Configure the display format to display the time constant of each pole and zero.

H.DisplayFormat = 'time constant'

H =

 -0.14706 (1-0.2s)

 Customize Model Display

3-19

 (1+0.1s) (1 + 1.029(0.1715s) + (0.1715s)^2)

Continuous-time zero/pole/gain model.

You can read the time constants and damping ratios from the display as follows:

• Factors corresponding to real roots are displayed as (τs). The variable τ is the time
constant of the root. For example, the time constant of the zero of H is 0.2.

• Factors corresponding to complex pairs of roots are displayed as 1 – 2ζ(τs) + (τs)2.
The variable τ is the time constant, and ζ is the damping ratio of the root. For
example, the time constant of the complex pole pair is 0.1715, and the damping
ratio is 1.029/2.

4

Model Interconnections

• “Why Interconnect Models?” on page 4-2
• “Catalog of Model Interconnections” on page 4-3
• “Numeric Model of SISO Feedback Loop” on page 4-6
• “Tunable Model of SISO Feedback Loop” on page 4-8
• “Multi-Loop Control System” on page 4-10
• “Mark Analysis Points in Closed-Loop Models” on page 4-13
• “MIMO Control System” on page 4-19
• “MIMO Feedback Loop” on page 4-22
• “How the Software Determines Properties of Connected Models” on page 4-26
• “Rules That Determine Model Type” on page 4-27
• “Recommended Model Type for Building Block Diagrams” on page 4-29

4 Model Interconnections

4-2

Why Interconnect Models?

Interconnecting models of components allows you to construct models of control systems.
You can conceptualize your control system as a block diagram containing multiple
interconnected components, such as a plant or a controller. Using model arithmetic or
interconnection commands, you combine models of each of these components into a single
model representing the entire block diagram.

For example, you can interconnect dynamic system models of a plant G(s), a controller
C(s), sensor dynamics S(s), and a filter F(s) to construct a single model that represents
the entire closed-loop control system in the following illustration:

r
-

G(s)C(s) y
+

F(s)

S(s)

More About
• “Catalog of Model Interconnections” on page 4-3

 Catalog of Model Interconnections

4-3

Catalog of Model Interconnections

Each type of block diagram connection corresponds to a model interconnection command
or arithmetic expression. The following tables summarize the block diagram connections
with the corresponding interconnection command and arithmetic expression.

In this section...

“Model Interconnection Commands” on page 4-3
“Arithmetic Operations” on page 4-4

Model Interconnection Commands

Block Diagram Connection Command Arithmetic Expression

H1u yH2
series(H1,H2) H2*H1

+

H1

u y
+

H2

parallel(H1,H2) H1+H2

+

H1

u y
-

H2

parallel(H1,-H2) H1-H2

+

H1u y
-

H2

feedback(H1,H2) H1/(1+H2*H1) (not
recommended)

4 Model Interconnections

4-4

Block Diagram Connection Command Arithmetic Expression

H1u yH2-1
N/A H1/H2 (division)

H2u yH1-1
N/A H1\H2 (left division)

u yH1-1
inv(H1) N/A

H1

H2

w
1

w
2

z
1

z
2

u y

lft(H1,H2,nu,ny) N/A

Arithmetic Operations

You can apply almost all arithmetic operations to dynamic system models, including
those shown below.

Operation Description

+ Addition
- Subtraction
* Multiplication
.* Element-by-element multiplication
/ Right matrix divide
\ Left matrix divide
inv Matrix inversion
' Pertransposition
.' Transposition

 Catalog of Model Interconnections

4-5

Operation Description

^ Powers of a dynamic system model (as in s^2)

In some cases, you might obtain better results using model interconnection commands,
such as feedback or connect, instead of model arithmetic. For example, the command
T = feedback(H1,H2) returns better results than the algebraic expression T = H1/
(1+H2*H1). The latter expression duplicates the poles of H1, which inflates the model
order and might lead to computational inaccuracy.

See Also
connect | feedback | parallel | series

Related Examples
• “Numeric Model of SISO Feedback Loop” on page 4-6
• “Multi-Loop Control System” on page 4-10
• “MIMO Control System” on page 4-19

More About
• “How the Software Determines Properties of Connected Models” on page 4-26
• “Recommended Model Type for Building Block Diagrams” on page 4-29

4 Model Interconnections

4-6

Numeric Model of SISO Feedback Loop
This example shows how to interconnect “Numeric LTI Models” representing multiple
system components to build a single numeric model of a closed-loop system, using model
arithmetic and interconnection commands.

Construct a model of the following single-loop control system.

r
-

G(s)C(s) y
+

F(s)

S(s)

The feedback loop includes a plant G(s), a controller C(s), and a representation of sensor
dynamics, S(s). The system also includes a prefilter F(s).

1 Create model objects representing each of the components.

G = zpk([],[-1,-1],1);

C = pid(2,1.3,0.3,0.5);

S = tf(5,[1 4]);

F = tf(1,[1 1]);

The plant G is a zero-pole-gain (zpk) model with a double pole at s = –1. Model object
C is a PID controller. The models F and S are transfer functions.

2 Connect the controller and plant models.

H = G*C;

To combine models using the multiplication operator *, enter the models in reverse
order compared to the block diagram.

Tip Alternatively, construct H(s) using the series command:

H = series(C,G);

3
Construct the unfiltered closed-loop response T s

H

HS
() =

+1
.

 Numeric Model of SISO Feedback Loop

4-7

T = feedback(H,S);

Caution Do not use model arithmetic to construct T algebraically:

T = H/(1+H*S)

This computation duplicates the poles of H, which inflates the model order and
might lead to computational inaccuracy.

4 Construct the entire closed-loop system response from r to y.

T_ry = T*F;

T_ry is a Numeric LTI Model representing the aggregate closed-loop system. T_ry does
not keep track of the coefficients of the components G, C, F, and S.

You can operate on T_ry with any Control System Toolbox control design or analysis
commands.

See Also
connect | feedback | parallel | series

Related Examples
• “Tunable Model of SISO Feedback Loop” on page 4-8
• “Multi-Loop Control System” on page 4-10
• “MIMO Control System” on page 4-19

More About
• “Catalog of Model Interconnections” on page 4-3

4 Model Interconnections

4-8

Tunable Model of SISO Feedback Loop
This example shows how to create a tunable model of the control system in the following
illustration.

r
-

G(s)C(s) y
+

F(s)

S(s)

The plant response G(s) = 1/(s + 1)2. The model of sensor dynamics is S(s) = 5/(s + 4). The
controller C is a tunable PID controller, and the prefilter F = a/(s + a) is a low-pass filter
with one tunable parameter, a.

Create models representing the plant and sensor dynamics.

Because the plant and sensor dynamics are fixed, represent them using numeric LTI
models zpk and tf.

G = zpk([],[-1,-1],1);

S = tf(5,[1 4]);

Create a tunable representation of the controller C.

C = ltiblock.pid('C','PID');

C =

 Parametric continuous-time PID controller "C" with formula:

 1 s

 Kp + Ki * --- + Kd * --------

 s Tf*s+1

 and tunable parameters Kp, Ki, Kd, Tf.

Type "pid(C)" to see the current value and "get(C)" to see all properties.

C is a ltiblock.pid object, which is a Control Design Block with a predefined
proportional-integral-derivative (PID) structure.

 Tunable Model of SISO Feedback Loop

4-9

Create a model of the filter F = a/(s + a) with one tunable parameter.

a = realp('a',10);

F = tf(a,[1 a]);

a is a realp (real tunable parameter) object with initial value 10. Using a as a coefficient
in tf creates the tunable genss model object F.

Connect the models together to construct a model of the closed-loop response from r to y.

T = feedback(G*C,S)*F

T is a genss model object. In contrast to an aggregate model formed by connecting only
Numeric LTI models, T keeps track of the tunable elements of the control system. The
tunable elements are stored in the Blocks property of the genss model object.

Display the tunable elements of T.

T.Blocks

ans =

 C: [1x1 ltiblock.pid]

 a: [1x1 realp]

If you have Robust Control Toolbox software, you can use tuning commands such as
systune to tune the free parameters of T to meet design requirements you specify.

See Also
feedback | ltiblock.pid

More About
• “Control Design Blocks”
• “Dynamic System Models”

4 Model Interconnections

4-10

Multi-Loop Control System

This example shows how to build an arbitrary block diagram by connecting models using
connect. The system is a Smith Predictor, the single-input, single-output (SISO) multi-
loop control system shown in the following block diagram.

For more information about the Smith Predictor, see Control of Processes with Long
Dead Time: The Smith Predictor.

The connect command lets you construct the overall transfer function from ysp to y. To
use connect, specify the input and output channel names of the components of the block
diagram. connect automatically joins ports that have the same name, as shown in the
following figure.

To build the closed loop model of the Smith Predictor system from ysp to y:

1 Create the components of the block diagram: the process model P, the predictor
model Gp, the delay model Dp, the filter F, and the PI controller C. Specify names for

 Multi-Loop Control System

4-11

the input and output channels of each model so that connect can automatically join
them to build the block diagram.

s = tf('s');

P = exp(-93.9*s) * 5.6/(40.2*s+1);

P.InputName = 'u'; P.OutputName = 'y';

Gp = 5.6/(40.2*s+1);

Gp.InputName = 'u'; Gp.OutputName = 'yp';

Dp = exp(-93.9*s);

Dp.InputName = 'yp'; Dp.OutputName = 'y1';

F = 1/(20*s+1);

F.InputName = 'dy'; F.OutputName = 'dp';

C = pidstd(0.574,40.1);

C.Inputname = 'e'; C.OutputName = 'u';

2 Create the summing junctions needed to complete the block diagram.

sum1 = sumblk('e = ysp - ym');

sum2 = sumblk('ym = yp + dp');

sum3 = sumblk('dy = y - y1');

The argument to sumblk is a formula specified as a string. This string relates the
input and output signals of the summing junction. sumblk creates a summing
junction with the input and output signal names specified in the formula. For
example, in sum1, the string 'e = ysp - ym' specifies an output signal named e,
which is the difference between input signals named ysp and ym.

3 Assemble the complete model from ysp to y.

T = connect(P,Gp,Dp,C,F,sum1,sum2,sum3,'ysp','y');

You can list the models and summing junctions in any order because connect
automatically interconnects them using their input and output channel names.

The last two arguments specify the input and output signals of the multi-loop control
structure. Thus, T is a ss model with input ysp and output y.

See Also
connect | sumblk

4 Model Interconnections

4-12

Related Examples
• “Tunable Model of SISO Feedback Loop” on page 4-8
• “MIMO Control System” on page 4-19
• “Mark Analysis Points in Closed-Loop Models” on page 4-13

More About
• “How the Software Determines Properties of Connected Models” on page 4-26

 Mark Analysis Points in Closed-Loop Models

4-13

Mark Analysis Points in Closed-Loop Models

This example shows how to build a block diagram and insert analysis points at locations
of interest using the connect command. You can then use the analysis points to extract
various system responses from the model.

For this example, create a model of a Smith predictor, the SISO multiloop control system
shown in the following block diagram.

Points marked by x are analysis points to mark for this example. For instance, if you
want to calculate the step response of the closed-loop system to a disturbance at the
plant input, you can use an anlysis point at u. If you want to calculate the response of the
system with one or both of the control loops open, you can use the analysis points at yp or
dp.

To build this system, first create the dynamic components of the block diagram.
Specify names for the input and output channels of each model so that connect can
automatically join them to build the block diagram.

s = tf('s');

% Process model

P = exp(-93.9*s) * 5.6/(40.2*s+1);

P.InputName = 'u';

P.OutputName = 'y';

% Predictor model

4 Model Interconnections

4-14

Gp = 5.6/(40.2*s+1);

Gp.InputName = 'u';

Gp.OutputName = 'yp';

% Delay model

Dp = exp(-93.9*s);

Dp.InputName = 'yp';

Dp.OutputName = 'y1';

% Filter

F = 1/(20*s+1);

F.InputName = 'dy';

F.OutputName = 'dp';

% PI controller

C = pidstd(0.574,40.1);

C.Inputname = 'e';

C.OutputName = 'u';

Create the summing junctions needed to complete the block diagram. (For more
information about creating summing junctions, see sumblk).

sum1 = sumblk('e = ysp - ym');

sum2 = sumblk('ym = yp + dp');

sum3 = sumblk('dy = y - y1');

Assemble the complete model.

input = 'ysp';

output = 'y';

APs = {'u','dp','yp'};

T = connect(P,Gp,Dp,C,F,sum1,sum2,sum3,input,output,APs)

T =

 Generalized continuous-time state-space model with 1 outputs, 1 inputs, 4 states, and the following blocks:

 AnalysisPoints_: Analysis point, 3 channels, 1 occurrences.

Type "ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks" to interact with the blocks.

When you use the APs input argument, the connect command automatically inserts
an AnalysisPoint block into the generalized state-space (genss) model, T. The

 Mark Analysis Points in Closed-Loop Models

4-15

automatically generated block is named AnalysisPoints_. The three channels of
AnalysisPoints_ correspond to the three locations specified in the APs argument to
the connect command. Use getPoints to see a list of the available analysis points in
the model.

getPoints(T)

ans =

 'dp'

 'u'

 'yp'

Use these locations as inputs, outputs, or loop openings when you extract responses from
the model. For example, extract and plot the response at the system output to a step
disturbance at the plant input, u.

Tp = getIOTransfer(T,'u','y');

stepplot(Tp)

4 Model Interconnections

4-16

Similarly, calculate the open-loop response of the plant and controller by opening both
feedback loops.

openings = {'dp','yp'};

L = getIOTransfer(T,'ysp','y',openings);

bodeplot(L)

 Mark Analysis Points in Closed-Loop Models

4-17

When you create a control system model, you can create an AnalysisPoint block
explicitly and assign input and output names to it. You can then include it in the
input arguments to connect as one of the blocks to combine. However, using the APs
argument to connect as illustrated in this example is a simpler way to mark points of
interest when building control system models.

See Also
AnalysisPoint | connect | sumblk

Related Examples
• “Control System with Multichannel Analysis Points” on page 2-58

4 Model Interconnections

4-18

More About
• “Marking Signals of Interest for Control System Analysis and Design” on page 2-62

 MIMO Control System

4-19

MIMO Control System
This example shows how to build a MIMO control system using connect to interconnect
Numeric LTI models and tunable Control Design Blocks.

Consider the following two-input, two-output control system.

CL

CV

D yr
+

-

G

L

V

p
L

p
V

e

The plant G is a distillation column with two inputs and two outputs. The two inputs
are the reflux L and boilup V. The two outputs are the concentrations of two chemicals,
represented by the vector signal y = [y1,y2]. You can represent this plant model as:

G s
s

() =
+

-

-

È

Î
Í

˘

˚
˙

1

75 1

87 8 86 4

108 2 109 6

. .

. .
.

The vector setpoint signal r = [r1,r2] specifies the desired concentrations of the two
chemicals. The vector error signal e represents the input to D, a static 2-by-2 decoupling
matrix. CL and CV represent independent PI controllers that control the two inputs of G.

To create a two-input, two-output model representing this closed-loop control system:

1 Create a Numeric LTI model representing the 2-by-2 plant G.

s = tf('s','TimeUnit','minutes');

G = [87.8 -86.4 ; 108.2 -109.6]/(75*s+1);

G.InputName = {'L','V'};

G.OutputName = 'y';

When you construct the closed-loop model, connect uses the input and output
names to form connections between the block diagram components. Therefore, you
must assign names to the inputs and outputs of the transfer function G in either of
the following ways: .

4 Model Interconnections

4-20

• You can assign input and output names to individual signals by specifying signal
names in a cell array, as in G.InputName = {'L','V'}

• Alternatively, you can use vector signal naming, which the software
automatically expands. For example, the command G.OutputName = 'y'
assigns the names 'y(1)' and 'y(2)' to the outputs of G.

2 Create tunable Control Design Blocks representing the decoupling matrix D and the
PI controllers CL and CV.

D = ltiblock.gain('Decoupler',eye(2));

D.u = 'e';

D.y = {'pL','pV'};

C_L = ltiblock.pid('C_L','pi'); C_L.TimeUnit = 'minutes';

C_L.u = 'pL'; C_L.y = 'L';

C_V = ltiblock.pid('C_V','pi'); C_V.TimeUnit = 'minutes';

C_V.u = 'pV'; C_V.y = 'V';

Note: u and y are shorthand notations for the InputName and OutputName
properties, respectively. Thus, for example, entering:

D.u = 'e';

D.y = {'pL','pV'};

is equivalent to entering:

D.InputName = 'e';

D.OutputName = {'pL','pV'};

3 Create the summing junction.

The summing junction produces the error signals e by taking the difference between
r and y.

Sum = sumblk('e = r - y',2);

Sum represents the transfer function for the summing junction described by the
formula string 'e = r - y'. The second argument to sumblk specifies that the
inputs and outputs of Sum are each vector signals of length 2. The software therefore
automatically assigns the signal names {'r(1)','r(2)','y(1)','y(2)'} to
Sum.InputName and {'e(1)','e(2)'} to Sum.OutputName.

 MIMO Control System

4-21

4 Join all components to build the closed-loop system from r to y.

CLry = connect(G,D,C_L,C_V,Sum,'r','y');

The arguments to the connect function include all the components of the closed-loop
system, in any order. connect automatically combines the components using the
input and output names to join signals.

The last two arguments to connect specify the output and input signals of the
closed-loop model, respectively. The resulting genss model CLry has two-inputs and
two outputs.

See Also
connect | sumblk

Related Examples
• “Tunable Model of SISO Feedback Loop” on page 4-8
• “Multi-Loop Control System” on page 4-10
• “MIMO Control System” on page 4-19

More About
• “Catalog of Model Interconnections” on page 4-3

4 Model Interconnections

4-22

MIMO Feedback Loop

This example shows how to obtain the closed-loop response of a MIMO feedback loop in
three different ways.

In this example, you obtain the response from Azref to Az of the MIMO feedback loop of
the following block diagram.

You can compute the closed-loop response using one of the following three approaches:

• Name-based interconnection with connect
• Name-based interconnection with feedback
• Index-based interconnection with feedback

You can use whichever of these approaches is most convenient for your application.

Load the plant Aerodyn and the controller Autopilot into the MATLAB® workspace.
These models are stored in the datafile MIMOfeedback.mat.

load(fullfile(matlabroot,'examples','control','MIMOfeedback.mat'))

Aerodyn is a 4-input, 7-output state-space (ss) model. Autopilot is a 5-input, 1-output
ss model. The inputs and outputs of both models names appear as shown in the block
diagram.

Compute the closed-loop response from Azref to Az using connect.

T1 = connect(Autopilot,Aerodyn,'Azref','Az');

 MIMO Feedback Loop

4-23

Warning: The following block inputs are not used: Rho,a,Thrust.

Warning: The following block outputs are not used: Xe,Ze,Altitude.

The connect function combines the models by joining the inputs and outputs that have
matching names. The last two arguments to connect specify the input and output
signals of the resulting model. Therefore, T1 is a state-space model with input Azref and
output Az. The connect function ignores the other inputs and outputs in Autopilot
and Aerodyn.

Compute the closed-loop response from Azref to Az using name-based interconnection
with the feedback command. Use the model input and output names to specify the
interconnections between Aerodyn and Autopilot.

When you use the feedback function, think of the closed-loop system as a feedback
interconnection between an open-loop plant-controller combination L and a diagonal
unity-gain feedback element K. The following block diagram shows this interconnection.

L = series(Autopilot,Aerodyn,'Fin');

FeedbackChannels = {'Alpha','Mach','Az','q'};

K = ss(eye(4),'InputName',FeedbackChannels,...

 'OutputName',FeedbackChannels);

T2 = feedback(L,K,'name',+1);

4 Model Interconnections

4-24

The closed-loop model T2 represents the positive feedback interconnection of L and K.
The 'name' option causes feedback to connect L and K by matching their input and
output names.

T2 is a 5-input, 7-output state-space model. The closed-loop response from Azref to Az is
T2('Az','Azref').

Compute the closed-loop response from Azref to Az using feedback, using indices to
specify the interconnections between Aerodyn and Autopilot.

L = series(Autopilot,Aerodyn,1,4);

K = ss(eye(4));

T3 = feedback(L,K,[1 2 3 4],[4 3 6 5],+1);

The vectors [1 2 3 4] and [4 3 6 5] specify which inputs and outputs, respectively,
complete the feedback interconnection. For example, feedback uses output 4 and input
1 of L to create the first feedback interconnection. The function uses output 3 and input 2
to create the second interconnection, and so on.

T3 is a 5-input, 7-output state-space model. The closed-loop response from Azref to Az is
T3(6,5).

Compare the step response from Azref to Az to confirm that the three approaches yield
the same results.

step(T1,T2('Az','Azref'),T3(6,5),2)

 MIMO Feedback Loop

4-25

See Also
connect | feedback

Related Examples
• “Multi-Loop Control System” on page 4-10
• “MIMO Control System” on page 4-19

More About
• “How the Software Determines Properties of Connected Models” on page 4-26

4 Model Interconnections

4-26

How the Software Determines Properties of Connected Models

When you interconnect models, the operation and the properties of the models you are
connecting determine the resulting model's properties. The following table summarizes
some general rules governing how resulting model property values are determined.

Property Expected Behavior

Ts When connecting discrete-time models, all models must
have identical or unspecified (sys.Ts = -1) sample
time. The resulting model inherits the sample time from
the connected models.

InputName

OutputName

InputGroup

InputGroup

In general, the resulting model inherits I/O names
and I/O groups from connected models. However,
conflicting I/O names or I/O groups are not inherited.
For example, the InputName property for sys1 + sys2
is left unspecified if sys1 and sys2 have different
InputName property values.

TimeUnit All connected models must have identical TimeUnit
properties. The resulting model inherits its TimeUnit
from the connected models.

Variable A model resulting from operations on tf or zpk models
inherits its Variable property value from the operands.
Conflicts are resolved according the following rules:

• For continuous-time models, 'p' has precedence over
's'.

• For discrete-time models, 'q^-1' and 'z^-1'
have precedence over 'q' and 'z', while 'q' has
precedence over 'z'.

Notes

UserData

Most operations ignore the Notes and UserData
properties. These properties of the resulting model are
empty.

More About
• “Rules That Determine Model Type” on page 4-27

 Rules That Determine Model Type

4-27

Rules That Determine Model Type
This example explains therules that determine the type of model that results when you
interconnect models of different types.

When you combine Numeric LTI models other than frd models using connect, the
resulting model is a state-space (ss) model. For other interconnection commands, the
resulting model is determined by the following order of precedence:

ss > zpk > tf > pid > pidstd

For example, connect an ss model with a pid model.

P = ss([-0.8,0.4;0.4,-1.0],[-3.0;1.4],[0.3,0],0);

C = pid(-0.13,-0.61);

CL = feedback(P*C,1)

The ss model has the highest precedence among Numeric LTI models. Therefore,
combining P and C with any model interconnection command returns an ss model.

Combining Numeric LTI models with Generalized LTI models or with Control Design
Blocks results in Generalized LTI models.

For example, connect the ss model CL with a Control Design Block.

F = ltiblock.tf('F',0,1);

CLF = F*CL

CLF is a genss model.

Any connection that includes a frequency-response model (frd or genfrd) results in a
frequency-response model.

Note: The software automatically converts all models to the resulting model type before
performing the connection operation.

See Also
connect | feedback | parallel | series

Related Examples
• “Numeric Model of SISO Feedback Loop” on page 4-6

4 Model Interconnections

4-28

• “Multi-Loop Control System” on page 4-10

More About
• “How the Software Determines Properties of Connected Models” on page 4-26
• “Recommended Model Type for Building Block Diagrams” on page 4-29

 Recommended Model Type for Building Block Diagrams

4-29

Recommended Model Type for Building Block Diagrams

This example shows how choice of model type can affect numerical accuracy when
interconnecting models.

You can represent block diagram components with any model type. However, certain
connection operations yield better numerical accuracy for models in ss form.

For example, interconnect two models in series using different model types to see how
different representations introduce numerical inaccuracies.

Load the models Pd and Cd. These models are ninth-order and second-order discrete-time
transfer functions, respectively.

load numdemo Pd Cd

Compute the open-loop transfer function L = Pd*Cd using the tf, zpk, ss, and frd
representations.

Ltf = Pd*Cd;

Lzp = zpk(Pd)*Cd;

Lss = ss(Pd)*Cd;

w = logspace(-1,3,100);

Lfrd = frd(Pd,w)*Cd;

Plot the magnitude of the frequency response to compare the four representations.

bodemag(Ltf,Lzp,Lss,Lfrd)

legend('tf','zpk','ss','frd')

4 Model Interconnections

4-30

The tf representation has lost low-frequency dynamics that other representations
preserve.

More About
• “Rules That Determine Model Type” on page 4-27

5

Model Transformation

• “Conversion Between Model Types” on page 5-2
• “Discretize a Compensator” on page 5-6
• “Improve Accuracy of Discretized System with Time Delay” on page 5-12
• “Convert Discrete-Time System to Continuous Time” on page 5-16
• “Continuous-Discrete Conversion Methods” on page 5-19
• “Upsample a Discrete-Time System” on page 5-29
• “Choosing a Resampling Command” on page 5-32
• “Why Simplify Models?” on page 5-33
• “Cancellation Versus Approximation” on page 5-34
• “Approximate Model with Lower-Order Model” on page 5-36
• “Choose a Low-Order Approximation Method” on page 5-41
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-46
• “Eliminate States by Pole-Zero Cancellation” on page 5-50

5 Model Transformation

5-2

Conversion Between Model Types

In this section...

“Explicit Conversion Between Model Types” on page 5-2
“Automatic Conversion Between Model Types” on page 5-2
“Recommended Working Representation” on page 5-3
“Convert PID Controller to Transfer Function” on page 5-3
“Get Current Value of Generalized Model by Model Conversion” on page 5-4

Explicit Conversion Between Model Types

You can explicitly convert a model from one representation to another using the model-
creation command for the target model type. For example, convert to state-space
representation usingss, and convert to parallel-form PID using pid. For information
about converting to a particular model type, see the reference page for that model type.

In general, you can convert from any model type to any other. However, there are a few
limitations. For example, you cannot convert:

• frd models to analytic model types such as ss, tf, or zpk (unless you perform system
identification with System Identification Toolbox software).

• ss models with internal delays to tf or zpk.

You can convert between Numeric LTI models and Generalized LTI models.

• Converting a Generalized LTI model to a Numeric LTI model evaluates any Control
Design Blocks at their current (nominal) value.

• Converting a Numeric LTI model to a Generalized LTI model creates a Generalized
LTI model with an empty Blocks property.

Automatic Conversion Between Model Types

Some algorithms operate only on one type of model object. For example, the algorithm
for zero-order-hold discretization with c2d can only be performed on state-space models.
Similarly, commands such as tfdata or piddata expect a particular type of model
(tf or pid, respectively). For convenience, such commands automatically convert input
models to the appropriate or required model type. For example:

 Conversion Between Model Types

5-3

sys = ss(0,1,1,0)

[num,den] = tfdata(sys)

tfdata automatically converts the state-space model sys to transfer function form to
return numerator and denominator data.

Conversions to state-space form are not uniquely defined. For this reason, automatic
conversions to state space do not occur when the result depends on the choice of state
coordinates. For example, the initial and kalman commands require state-space
models.

Recommended Working Representation

You can represent numeric system components using any model type. However, Numeric
LTI model types are not equally well-suited for numerical computations. In general, it
is recommended that you work with state-space (ss) or frequency response data (frd)
models, for the following reasons:

• The accuracy of computations using high-order transfer functions (tf or zpk models)
is sometimes poor, particularly for MIMO or high-order systems. Conversions to a
transfer function representation can incur a loss of accuracy.

• When you convert tf or zpk models to state space using ss, the software
automatically performs balancing and scaling operations. Balancing and scaling
improves the numeric accuracy of computations involving the model. For more
information about balancing and scaling state-space models, see “Scaling State-Space
Models”.

In addition, converting back and forth between model types can introduce additional
states or orders, or introduce numeric inaccuracies. For example, conversions to state
space are not uniquely defined, and are not guaranteed to produce a minimal realization
for MIMO models. For a given state-space model sys,

ss(tf(sys))

can return a model with different state-space matrices, or even a different number of
states in the MIMO case.

Convert PID Controller to Transfer Function

This example shows how to convert a PID controller model to a transfer function model.

5 Model Transformation

5-4

You can use the technique of this example to convert any type of model to another type of
model.

Create a PID controller.

pid_sys = pid(1,1.5,3);

Convert pid_sys to a transfer function model.

C = tf(pid_sys);

C is a tf model representation of pid_sys.

You can similarly convert transfer function models to pid models, provided the tf model
object represents a parallel-form PID controller with Tf ≥ 0.

Get Current Value of Generalized Model by Model Conversion

This example shows how to get the current value of a generalized model by converting
it to a numeric model. This conversion is useful, for example, when you have tuned the
parameters of the generalized model using a Robust Control Toolbox command such as
systune or looptune.

Create a Generalized Model

Represent the transfer function

F
a

s a
=

+

containing a real, tunable parameter, a, which is initialized to 10.

a = realp('a',10);

F = tf(a,[1 a]);

F is a genss model parameterized by a.

Tune the Model

Typically, once of you have a generalized model, you tune the parameters of the model
using a tuning command such as systune or looptune. For this example, instead of
tuning the model, manually change the value of the tunable component of F.

 Conversion Between Model Types

5-5

F.Blocks.a.Value = 5;

Get the current value of the generalized model.

Get the current value of the generalized model by converting it to a numeric model.

F_cur_val = tf(F)

F_cur_val =

 5

 s + 5

Continuous-time transfer function.

tf(F) converts the generalized model, F, to a numeric transfer function, F_cur_val.

To view the state-space representation of the current value of F, type ss(F).

To examine the current values of the individual tunable components in a generalized
model, use showBlockValue.

5 Model Transformation

5-6

Discretize a Compensator

This example shows how to convert a compensator from continuous to discrete time using
several discretization methods, to identify a method that yields a good match in the
frequency domain.

You might design a compensator in continuous time, and then need to convert it to
discrete time for a digital implementation. When you do so, you want the discretization
to preserve frequency-domain characteristics that are essential to your performance and
stability requirements.

In the following control system, G is a continuous-time second-order system with a sharp
resonance around 3 rad/s.

One valid controller for this system includes a notch filter in series with an integrator.
Create a model of this controller.

notch = tf([1,0.5,9],[1,5,9]);

integ = pid(0,0.34);

C = integ*notch;

bodeplot(C)

 Discretize a Compensator

5-7

The notch filter centered at 3 rad/s counteracts the effect of the resonance in G. This
configuration allows higher loop gain for a faster overall response.

Discretize the compensator.

Cdz = c2d(C,0.5);

The c2d command supports several different discretization methods. Since this command
does not specify a method, c2d uses the default method, Zero-Order Hold (ZOH). In the
ZOH method, the time-domain response of the discretized compensator matches the
continuous-time response at each time step.

5 Model Transformation

5-8

The discretized controller Cdz has a sample time of 0.5 s. In practice, the sample time
you choose might be constrained by the system in which you implement your controller,
or by the bandwidth of your control system.

Compare the frequency-domain response of C and Cdz.

bodeplot(C,Cdz)

legend('C','Cdz');

The vertical line marks the Nyquist frequency, , where is the sample time. Near
the Nyquist frequency, the response of the discretized compensator is distorted relative
to the continuous-time response. As a result, the discretized notched filter may not
properly counteract the plant resonance.

 Discretize a Compensator

5-9

To fix this, try discretizing the compensator using the Tustin method and compare to
the ZOH result. The Tustin discretization method often yields a better match in the
frequency domain than the ZOH method.

Cdt = c2d(C,0.5,'tustin');

plotopts = bodeoptions;

plotopts.Ylim = {[-60,40],[-225,0]};

bodeplot(C,Cdz,Cdt,plotopts)

legend('C','Cdz','Cdt')

The Tustin method preserves the depth of the notch. However, the method introduces a
frequency shift that is unacceptable for many applications. You can remedy the frequency
shift by specifying the notch frequency as the prewarping frequency in the Tustin
transform.

5 Model Transformation

5-10

Discretize the compensator using the Tustin method with frequency prewarping, and
compare the results.

discopts = c2dOptions('Method','tustin','PrewarpFrequency',3.0);

Cdtp = c2d(C,0.5,discopts);

bodeplot(C,Cdt,Cdtp,plotopts)

legend('C','Cdt','Cdtp')

To specify additional discretization options beyond the discretization method, use
c2dOptions. Here, the discretization options set discopts specifies both the Tustin
method and the prewarp frequency. The prewarp frequency is 3.0 rad/s, the frequency of
the notch in the compensator response.

 Discretize a Compensator

5-11

Using the Tustin method with frequency prewarping yields a better-matching frequency
response than Tustin without prewarping.

See Also
c2d | c2dOptions

Related Examples
• “Improve Accuracy of Discretized System with Time Delay” on page 5-12

More About
• “Continuous-Discrete Conversion Methods” on page 5-19

5 Model Transformation

5-12

Improve Accuracy of Discretized System with Time Delay
This example shows how to improve the frequency-domain accuracy of a system with a
time delay that is a fractional multiple of the sample time.

For systems with time delays that are not integer multiples of the sample time, the
Tustin and Matched methods by default round the time delays to the nearest multiple
of the sample time. To improve the accuracy of these methods for such systems, c2d can
optionally approximate the fractional portion of the time delay by a discrete-time all-pass
filter (a Thiran filter). In this example, discretize the system both without and with an
approximation of the fractional portion of the delay and compare the results.

Create a continuous-time transfer function with a transfer delay of 2.5 s.

G = tf(1,[1,0.2,4],'ioDelay',2.5);

Discretize G using a sample time of 1 s. G has a sharp resonance at 2 rad/s. At a sample
time of 1 s, that peak is close to the Nyquist frequency. For a frequency-domain match
that preserves dynamics near the peak, use the Tustin method with prewarp frequency 2
rad/s.

discopts = c2dOptions('Method','tustin','PrewarpFrequency',2);

Gt = c2d(G,1,discopts)

Warning: Rounding delays to the nearest multiple of the sampling period. For

more accuracy in the time domain, use the ZOH or FOH methods. For more accuracy

in the frequency domain, use Thiran filters to approximate the fractional delays

(type "help c2dOptions" for more details).

Gt =

 0.1693 z^2 + 0.3386 z + 0.1693

 z^(-3) * ------------------------------

 z^2 + 0.7961 z + 0.913

Sample time: 1 seconds

Discrete-time transfer function.

The software warns you that it rounds the fractional time delay to the nearest multiple
of the sample time. In this example, the time delay of 2.5 times the sample time (2.5 s)
converts to an additional factor of z^(-3) in Gt.

Compare Gt to the continuous-time system G.

 Improve Accuracy of Discretized System with Time Delay

5-13

plotopts = bodeoptions;

plotopts.Ylim = {[-100,20],[-1080,0]};

bodeplot(G,Gt,plotopts);

legend('G','Gt')

There is a phase lag between the discretized system Gt and the continuous-time system
G, which grows as the frequency approaches the Nyquist frequency. This phase lag is
largely due to the rounding of the fractional time delay. In this example, the fractional
time delay is half the sample time.

Discretize G again using a third-order discrete-time all-pass filter (Thiran filter) to
approximate the half-period portion of the delay.

discopts.FractDelayApproxOrder = 3;

5 Model Transformation

5-14

Gtf = c2d(G,1,discopts);

The FractDelayApproxOrder option specifies the order of the Thiran filter that
approximates the fractional portion of the delay. The other options in discopts are
unchanged. Thus Gtf is a Tustin discretization of G with prewarp at 2 rad/s.

Compare Gtf to G and Gt.

plotopts.PhaseMatching = 'on';

bodeplot(G,Gt,Gtf,plotopts);

legend('G','Gt','Gtf','Location','SouthWest')

The magnitudes of Gt and Gtf are identical. However, the phase of Gtf provides a
better match to the phase of the continuous-time system through the resonance. As the

 Improve Accuracy of Discretized System with Time Delay

5-15

frequency approaches the Nyquist frequency, this phase match deteriorates. A higher-
order approximation of the fractional delay would improve the phase matching closer
to the Nyquist frequencies. However, each additional order of approximation adds an
additional order (or state) to the discretized system.

If your application requires accurate frequency-matching near the Nyquist frequency,
use c2dOptions to make c2d approximate the fractional portion of the time delay as a
Thiran filter.

See Also
c2d | c2dOptions | thiran

Related Examples
• “Discretize a Compensator” on page 5-6

More About
• “Continuous-Discrete Conversion Methods” on page 5-19

5 Model Transformation

5-16

Convert Discrete-Time System to Continuous Time
This example shows how to convert a discrete-time system to continuous time using d2c,
and compares the results using two different interpolation methods.

Convert the following second-order discrete-time system to continuous time using the
zero-order hold (ZOH) method:

G = zpk(-0.5,[-2,5],1,0.1);

Gcz = d2c(G)

Warning: The model order was increased to handle real negative poles.

Gcz =

 2.6663 (s^2 + 14.28s + 780.9)

 (s-16.09) (s^2 - 13.86s + 1035)

Continuous-time zero/pole/gain model.

When you call d2c without specifying a method, the function uses ZOH by default. The
ZOH interpolation method increases the model order for systems that have real negative
poles. This order increase occurs because the interpolation algorithm maps real negative
poles in the domain to pairs of complex conjugate poles in the domain.

Convert G to continuous time using the Tustin method.

Gct = d2c(G,'tustin')

Gct =

 0.083333 (s+60) (s-20)

 (s-60) (s-13.33)

Continuous-time zero/pole/gain model.

In this case, there is no order increase.

 Convert Discrete-Time System to Continuous Time

5-17

Compare frequency responses of the interpolated systems with that of G.

bode(G,Gcz,Gct)

legend('G','Gcz','Gct')

In this case, the Tustin method provides a better frequency-domain match between
the discrete system and the interpolation. However, the Tustin interpolation method is
undefined for systems with poles at z = -1 (integrators), and is ill-conditioned for systems
with poles near z = 1.

See Also
d2c | d2cOptions

5 Model Transformation

5-18

Related Examples
• “Discretize a Compensator” on page 5-6

More About
• “Continuous-Discrete Conversion Methods” on page 5-19

 Continuous-Discrete Conversion Methods

5-19

Continuous-Discrete Conversion Methods

In this section...

“Choosing a Conversion Method” on page 5-19
“Zero-Order Hold” on page 5-20
“First-Order Hold” on page 5-21
“Impulse-Invariant Mapping” on page 5-22
“Tustin Approximation” on page 5-23
“Zero-Pole Matching Equivalents” on page 5-27

Choosing a Conversion Method

The c2d command discretizes continuous-time models. Conversely, d2c converts
discrete-time models to continuous time. Both commands support several discretization
and interpolation methods, as shown in the following table.

Discretization Method Use when:

“Zero-Order Hold” on page 5-20 You want an exact discretization in the
time domain for staircase inputs.

“First-Order Hold” on page 5-21 You want an exact discretization in the
time domain for piecewise linear inputs.

“Impulse-Invariant Mapping” on page
5-22 (c2d only)

You want an exact discretization in the
time domain for impulse train inputs.

“Tustin Approximation” on page 5-23 • You want good matching in the
frequency domain between the
continuous- and discrete-time models.

• Your model has important dynamics at
some particular frequency.

“Zero-Pole Matching Equivalents” on page
5-27

You have a SISO model, and you want good
matching in the frequency domain between
the continuous- and discrete-time models.

5 Model Transformation

5-20

Zero-Order Hold

The Zero-Order Hold (ZOH) method provides an exact match between the continuous-
and discrete-time systems in the time domain for staircase inputs.

The following block diagram illustrates the zero-order-hold discretization Hd(z) of a
continuous-time linear model H(s)

The ZOH block generates the continuous-time input signal u(t) by holding each sample
value u(k) constant over one sample period:

u t u k kT t k Ts s() = [] £ £ +(), 1

The signal u(t) is the input to the continuous system H(s). The output y[k] results from
sampling y(t) every Ts seconds.

Conversely, given a discrete system Hd(z), d2c produces a continuous system H(s). The
ZOH discretization of H(s) coincides with Hd(z).

The ZOH discrete-to-continuous conversion has the following limitations:

• d2c cannot convert LTI models with poles at z = 0.
• For discrete-time LTI models having negative real poles, ZOH d2c conversion

produces a continuous system with higher order. The model order increases because
a negative real pole in the z domain maps to a pure imaginary value in the s domain.
Such mapping results in a continuous-time model with complex data. To avoid this,
the software instead introduces a conjugate pair of complex poles in the s domain. See
“Convert Discrete-Time System to Continuous Time” on page 5-16 for an example.

 Continuous-Discrete Conversion Methods

5-21

ZOH Method for Systems with Time Delays

You can use the ZOH method to discretize SISO or MIMO continuous-time models with
time delays. The ZOH method yields an exact discretization for systems with input
delays, output delays, or transfer delays.

For systems with internal delays (delays in feedback loops), the ZOH method results in
approximate discretizations. The following figure illustrates a system with an internal
delay.

H(s)

e-ts

For such systems, c2d performs the following actions to compute an approximate ZOH
discretization:

1 Decomposes the delay τ as t r= +kTs with 0 £ <r T
s .

2 Absorbs the fractional delay r into H(s).

3 Discretizes H(s) to H(z).
4 Represents the integer portion of the delay kTs as an internal discrete-time delay z–k.

The final discretized model appears in the following figure:

H(s) e-s

H(z)

z-k

r

First-Order Hold

The First-Order Hold (FOH) method provides an exact match between the continuous-
and discrete-time systems in the time domain for piecewise linear inputs.

5 Model Transformation

5-22

FOH differs from ZOH by the underlying hold mechanism. To turn the input samples
u[k] into a continuous input u(t), FOH uses linear interpolation between samples:

u t u k
t kT

T
u k u k kT t k T

s

s

s s() = [] +
-

+[]- []() £ £ +()1 1,

This method is generally more accurate than ZOH for systems driven by smooth inputs.

This FOH method differs from standard causal FOH and is more appropriately called
triangle approximation (see [2], p. 228). The method is also known as ramp-invariant
approximation.

FOH Method for Systems with Time Delays

You can use the FOH method to discretize SISO or MIMO continuous-time models with
time delays. The FOH method handles time delays in the same way as the ZOH method.
See “ZOH Method for Systems with Time Delays” on page 5-21.

Impulse-Invariant Mapping

The impulse-invariant mapping produces a discrete-time model with the same impulse
response as the continuous time system. For example, compare the impulse response of a
first-order continuous system with the impulse-invariant discretization:

G = tf(1,[1,1]);

Gd1 = c2d(G,0.01,'impulse');

impulse(G,Gd1)

 Continuous-Discrete Conversion Methods

5-23

The impulse response plot shows that the impulse responses of the continuous and
discretized systems match.

Impulse-Invariant Mapping for Systems with Time Delays

You can use impulse-invariant mapping to discretize SISO or MIMO continuous-time
models with time delay, except that the method does not support ss models with internal
delays. For supported models, impulse-invariant mapping yields an exact discretization
of the time delay.

Tustin Approximation

The Tustin or bilinear approximation yields the best frequency-domain match between
the continuous-time and discretized systems. This method relates the s-domain and z-
domain transfer functions using the approximation:

5 Model Transformation

5-24

z e
sT

sT

sT s

s

s
= ª

+

-

1 2

1 2

/

/
.

In c2d conversions, the discretization Hd(z) of a continuous transfer function H(s) is:

H z H s s
T

z

z
d

s

() = ¢() ¢ =
-

+
,

2 1

1

Similarly, the d2c conversion relies on the inverse correspondence

H s H z z
sT

sT
d

s

s

() = ¢() ¢ =
+

-
,

/

/

1 2

1 2

When you convert a state-space model using the Tustin method, the states are not
preserved. The state transformation depends upon the state-space matrices and whether
the system has time delays. For example, for an explicit (E = I) continuous-time model
with no time delays, the state vector w[k] of the discretized model is related to the
continuous-time state vector x(t) by:

w kT I A
T

x kT
T

Bu kT x kT
T

Ax kT Bu ks
s

s
s

s s
s

s[] = -
Ê

Ë
Á

ˆ

¯
˜ () - () = () - () +

2 2 2
TTs()() .

Ts is the sample time of the discrete-time model. A and B are state-space matrices of the
continuous-time model.

Tustin Approximation with Frequency Prewarping

If your system has important dynamics at a particular frequency that you want the
transformation to preserve, you can use the Tustin method with frequency prewarping.
This method ensures a match between the continuous- and discrete-time responses at the
prewarp frequency.

The Tustin approximation with frequency prewarping uses the following transformation
of variables:

H z H s s
T

z

z
d

s

() = ¢() ¢ =
()

-

+
,

tan /

w

w 2

1

1

 Continuous-Discrete Conversion Methods

5-25

This change of variable ensures the matching of the continuous- and discrete-
time frequency responses at the prewarp frequency ω, because of the following
correspondence:

H j H ed
j Tsw
w() = ()

Tustin Approximation for Systems with Time Delays

You can use the Tustin approximation to discretize SISO or MIMO continuous-time
models with time delays.

By default, the Tustin method rounds any time delay to the nearest multiple of the
sample time. Therefore, for any time delay tau, the integer portion of the delay, k*Ts,
maps to a delay of k sampling periods in the discretized model. This approach ignores the
residual fractional delay, tau - k*Ts.

You can to approximate the fractional portion of the delay by a discrete all-pass filter
(Thiran filter) of specified order. To do so, use the FractDelayApproxOrder option of
c2dOptions. See “Improve Accuracy of Discretized System with Time Delay” on page
5-12 for an example.

To understand how the Tustin method handles systems with time delays, consider the
following SISO state-space model G(s). The model has input delay τi, output delay τo, and
internal delay τ.

e-tis
H(s)

e-tos

e-ts

G(s)

The following figure shows the general result of discretizing G(s) using the Tustin
method.

5 Model Transformation

5-26

Hd(z)

Gd(z)

z-moFo(z)Fi(z)z-mi

z-m F(z)

By default, c2d converts the time delays to pure integer time delays. The c2d command
computes the integer delays by rounding each time delay to the nearest multiple of
the sample time Ts. Thus, in the default case, mi = round(τi /Ts), mo = round(τo/Ts), and
m = round(τ/Ts).. Also in this case, Fi(z) = Fo(z) = F(z) = 1.

If you set FractDelayApproxOrder to a non-zero value, c2d approximates the
fractional portion of the time delays by Thiran filters Fi(z), Fo(z), and F(z).

The Thiran filters add additional states to the model. The maximum number of
additional states for each delay is FractDelayApproxOrder.

For example, for the input delay τi, the order of the Thiran filter Fi(z) is:
order(Fi(z)) = max(ceil(τi /Ts), FractDelayApproxOrder).

If ceil(τi /Ts) < FractDelayApproxOrder, the Thiran filter Fi(z) approximates the
entire input delay τi. If ceil(τi/Ts) > FractDelayApproxOrder, the Thiran filter only
approximates a portion of the input delay. In that case, c2d represents the remainder of
the input delay as a chain of unit delays z–mi, where
mi = ceil(τi /Ts) – FractDelayApproxOrder.

c2d uses Thiran filters and FractDelayApproxOrder in a similar way to approximate
the output delay τo and the internal delay τ.

When you discretizetf and zpk models using the Tustin method, c2d first aggregates all
input, output, and transfer delays into a single transfer delay τTOT for each channel. c2d
then approximates τTOT as a Thiran filter and a chain of unit delays in the same way as
described for each of the time delays in ss models.

 Continuous-Discrete Conversion Methods

5-27

For more information about Thiran filters, see the thiran reference page and [4].

Zero-Pole Matching Equivalents

The method of conversion by computing zero-pole matching equivalents applies only to
SISO systems. The continuous and discretized systems have matching DC gains. Their
poles and zeros are related by the transformation:

z e
i

s T
i s

=

where:

• zi is the ith pole or zero of the discrete-time system.
• si is the ith pole or zero of the continuous-time system.
• Ts is the sample time.

See [2] for more information.

Zero-Pole Matching for Systems with Time Delays

You can use zero-pole matching to discretize SISO continuous-time models with time
delay, except that the method does not support ss models with internal delays. The zero-
pole matching method handles time delays in the same way as the Tustin approximation.
See “Tustin Approximation for Systems with Time Delays” on page 5-25.

References

[1] Åström, K.J. and B. Wittenmark, Computer-Controlled Systems: Theory and Design,
Prentice-Hall, 1990, pp. 48-52.

[2] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of Dynamic Systems
(3rd Edition), Prentice Hall, 1997.

[3] Smith, J.O. III, “Impulse Invariant Method”, Physical Audio Signal
Processing, August 2007. http://www.dsprelated.com/dspbooks/pasp/
Impulse_Invariant_Method.html.

[4] T. Laakso, V. Valimaki, “Splitting the Unit Delay”, IEEE Signal Processing Magazine,
Vol. 13, No. 1, p.30-60, 1996.

http://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html
http://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html

5 Model Transformation

5-28

See Also
c2d | c2dOptions | d2c | d2cOptions | d2d | thiran

Related Examples
• “Discretize a Compensator” on page 5-6
• “Improve Accuracy of Discretized System with Time Delay” on page 5-12
• “Convert Discrete-Time System to Continuous Time” on page 5-16

 Upsample a Discrete-Time System

5-29

Upsample a Discrete-Time System

This example shows how to upsample a system using both the d2d and upsample
commands and compares the results of both to the original system.

Upsampling a system can be useful, for example, when you need to implement a digital
controller at a faster rate than you originally designed it for.

Create the discrete-time system G z
z

z
() =

+

-

0 4

0 7

.

.
 with a sample time of 0.3 s.

G = tf([1,0.4],[1,-0.7],0.3);

Resample the system at 0.1 s using d2d.

G_d2d = d2d(h1,0.1)

G_d2d =

 z - 0.4769

 z - 0.8879

Sample time: 0.1 seconds

Discrete-time transfer function.

By default, d2d uses the zero-order-hold (ZOH) method to resample the system. The
resampled system has the same order as G.

Resample the system again at 0.1 s, using upsample.

G_up = upsample(h1,3)

G_up =

 z^3 + 0.4

 z^3 - 0.7

The second input, 3, tells upsample to resample G at a sample time three times faster
than the sample time of G. This input to upsample must be an integer.

G_up has three times as many poles and zeroes as G.

5 Model Transformation

5-30

Compare the step responses of the original model G with the resampled models G_d2d
and G_up.

step(G,'-r',G_d2d,':g',G_up,'--b')

legend('G','d2d','upsample','Location','SouthEast')

The step response of the upsampled model G_up matches exactly the step response of
the original model G. The response of the resampled model G_d2d matches only at every
third sample.

Compare the frequency response of the original model with the resampled models.

bode(G,'-r',G_d2d,':g',G_up,'--b')

legend('G','d2d','upsample','Location','SouthWest')

 Upsample a Discrete-Time System

5-31

In the frequency domain as well, the model G_up created with the upsample command
matches the original model exactly up to the Nyquist frequency of the original model.

Using upsample provides a better match than d2d in both the time and frequency
domains. However, upsample increases the model order, which can be undesirable.
Additionally, upsample is only available where the original sample time is an integer
multiple of the new sample time.

See Also
d2d | d2dOptions | upsample

More About
• “Choosing a Resampling Command” on page 5-32

5 Model Transformation

5-32

Choosing a Resampling Command

You can resample a discrete-time model using the commands described in the following
table.

To... Use the command...

• Downsample a system.
• Upsample a system without any

restriction on the new sample time.

d2d

Upsample a system with the highest
accuracy when:

• The new sample time is integer-value-
times faster than the sample time of the
original model.

• Your new model can have more states
than the original model.

upsample

See Also
d2d | d2dOptions | upsample

Related Examples
• “Upsample a Discrete-Time System” on page 5-29

 Why Simplify Models?

5-33

Why Simplify Models?

Working with simpler models result in faster and more reliable computations than
higher-order models. Simpler models are also easier to understand and manipulate.
Therefore, it can be useful to reduce model order while preserving model characteristics
that are important to your application.

Some cases where you might want to reduce model order include:

• You are working with a relatively high-order model obtained from linearizing a
Simulink model, performing a finite-element calculation, identification with System
Identification Toolbox software, or other source.

• You design a high-order controller that you wish to implement as a lower-order
controller (such as a PID controller). For example, controller design using Linear-
Quadratic-Gaussian methods or H∞ synthesis techniques can yield a high-order result.
In this case, you might reduce the plant order before synthesis, reduce the controller
order after synthesis, or both.

• You want to improve the simulation speed of a Simulink model at a certain operating
point. In that case, you can linearize a portion of the model at that operating point
and compute a reduced-order simplification or approximation of the linearized model.
You can then replace the portion of the model with an LTI Block containing the
reduced-order model.

In general, when you reduce model order, you want to preserve model characteristics that
are important for your application. For example, for control design, you should verify that
the behavior of the reduced order model adequately matches the behavior of the original
model where the open-loop gain is close to 1 (in the gain crossover region).

Related Examples
• “Approximate Model with Lower-Order Model” on page 5-36
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-46
• “Eliminate States by Pole-Zero Cancellation” on page 5-50

More About
• “Cancellation Versus Approximation” on page 5-34

5 Model Transformation

5-34

Cancellation Versus Approximation

To reduce the order of a model, you can either simplify your model, or compute a lower-
order approximation. The following table summarizes the differences among several
model-reduction approaches.

Approach Commands

Simplification — Reduce model order
exactly by canceling pole-zero pairs or
eliminating states that have no effect on
the overall model response

• sminreal — Eliminate states that
are structurally disconnected from
the inputs or outputs. Eliminating
structurally disconnected states is
a good first step in model reduction
because the process does not involve any
numerical computation.

• minreal — Eliminate canceling
or near-canceling pole-zero pairs
from transfer functions. Eliminate
unobservable or uncontrollable states
from state-space models.

Approximation — compute a lower-order
approximation

balred — Compute a lower-order
approximation of your model by neglecting
states that have relatively low effect on the
overall model response

In some cases, approximation can yield better results, even if the model looks like a
good candidate for simplification. For example, models with near pole-zero cancellations
may be better reduced by approximation than simplification. Similarly, using balred to
reduce state-space models can yield more accurate results than minreal.

When you use a reduced-order model, always verify that the simplification or
approximation preserves model characteristics that are important for your application.
For example, compare the frequency responses of the original and reduced models using
bode or sigma. Or, compare the open-loop responses for the original and reduced plant
and controller models.

See Also
balred | minreal | sminreal

 Cancellation Versus Approximation

5-35

Related Examples
• “Approximate Model with Lower-Order Model” on page 5-36
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-46
• “Eliminate States by Pole-Zero Cancellation” on page 5-50

5 Model Transformation

5-36

Approximate Model with Lower-Order Model

This example shows how to compute a reduced-order approximation of a model using
balred.

To compute a reduced-order approximation, you first choose an order for the reduced
model by examining the contribution of the various states to the overall model behavior.

Load a high-order model.

load ltiexamples hplant

order(hplant)

ans =

 23

hplant is a 23rd-order SISO model. When choosing an order for the reduced system, it
is helpful to know how many states make a significant contribution to the overall model
behavior.

Examine the relative amount of energy per state using a Hankel singular value (HSV)
plot.

hsvplot(hplant)

 Approximate Model with Lower-Order Model

5-37

Small Hankel singular values indicate that the associated states contribute little to the
behavior of the system. The plot shows that two states account for most of the energy in
the system. Therefore, try simplifying the model to just first or second order.

Compute first-order and second-order reduced approximations of hplant.

opts = balredOptions('StateElimMethod','Truncate');

hplant1 = balred(hplant,1,opts);

hplant2 = balred(hplant,2,opts);

The second argument to balred specifies the target approximation order.

By default, balred discards the states with the smallest Hankel singular values,
and alters the remaining states to preserve the DC gain of the system. Setting the

5 Model Transformation

5-38

StateElimMethod option to Truncate causes balred to discard low-energy states
without altering the remaining states.

Compare the frequency responses of the original and approximated systems.

When working with reduced-order models, it is important to verify that the
approximation does not introduce inaccuracies at frequencies that are important for your
application.

bodeplot(hplant,hplant2,hplant1)

legend('Original','2nd order','1st order')

When working with MIMO systems, you can use sigma to examine a singular value plot
rather than a Bode plot.

 Approximate Model with Lower-Order Model

5-39

In this case, the second-order system matches the original 23rd-order system very well,
especially at lower frequencies. The first-order system does not match as well.

In general, as you decrease the order of the approximated model, the frequency
response of the approximated model begins to differ from the original model. Choose
an approximation that is sufficiently accurate in the bands that are important to you.
For example, in a control system, you might want good accuracy inside the control
bandwidth. Accuracy at frequencies far above the control bandwidth, where the gain
rapidly rolls off, might be less important.

Examine the time-domain responses of the original and reduced-order systems.

stepplot(hplant,hplant2,hplant1)

legend('Original','2nd order','1st order','Location','SouthEast')

5 Model Transformation

5-40

This result confirms that the second-order approximation is a good match to the original
23rd-order system.

See Also
balred | hsvplot

Related Examples
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-46
• “Choose a Low-Order Approximation Method” on page 5-41
• “Eliminate States by Pole-Zero Cancellation” on page 5-50

More About
• “Cancellation Versus Approximation” on page 5-34

 Choose a Low-Order Approximation Method

5-41

Choose a Low-Order Approximation Method
This example shows how to compute a low-order approximation in two ways and
compares the results.

By default, balred discards the states with that make the smallest contribution to
system behavior, altering the remaining states to preserve the DC gain of the system.
Setting the StateElimMethod option to Truncate causes balred to discard low-energy
states without altering the remaining states. Which method you choose depends upon
what dynamics are important to your application. In general, preserving DC gain comes
at the expense of accuracy in higher-frequency dynamics. Conversely, state truncation
can yield more accuracy in fast transients, at the expense of low-frequency accuracy.

In this example, compare the two methods of computing a reduced-order approximation
of the following closed-loop system from r to y.

Create the closed-loop model from r to y.

G = zpk([0 -2],[-1 -3],1);

C = tf(2,[1 1e-2]);

T = feedback(G*C,1)

T =

 2 s (s+2)

 (s+0.004277) (s+1.588) (s+4.418)

Continuous-time zero/pole/gain model.

T is a third-order system that has a near pole-zero cancellation close to = 0. Therefore,
it is a good candidate for order reduction by approximation.

Compute two second-order approximations to T, one that preserves the DC gain and one
that truncates the lowest-energy state without changing the other states.

5 Model Transformation

5-42

matchopt = balredOptions('StateElimMethod','MatchDC');

truncopt = balredOptions('StateElimMethod','Truncate');

Tmatch = balred(T,2,matchopt);

Ttrunc = balred(T,2,truncopt);

Use balredOptions to specify the approximation method.

Compare the frequency responses of the approximated models.

bodeplot(T,Tmatch,Ttrunc)

legend('Original','DC Match','Truncate')

The truncated model Ttrunc matches the original model well at high frequencies, but
differs considerably at low frequency. Conversely, Tmatch yields a good match at low
frequencies as expected, at the expense of high-frequency accuracy.

 Choose a Low-Order Approximation Method

5-43

You can also see the differences between the two methods by examining the time-
domain response in different regimes. Compare the slow dynamics by looking at the step
response of all three models with a long time horizon.

stepplot(T,Tmatch,'r--',Ttrunc,1000)

legend('Original','DC Match','Truncate')

As expected, on long time scales the DC matched approximation Tmatch is a good match
to the original model.

Compare the fast transients in the step response.

stepplot(T,Tmatch,'r',Ttrunc,'g--',1)

legend('Original','DC Match','Truncate')

5 Model Transformation

5-44

On short time scales, the truncated approximation Ttrunc provides a better match to the
original model. Which approximation method you should use depends on which regime is
most important for your application.

See Also
balred

Related Examples
• “Approximate Model with Lower-Order Model” on page 5-36
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-46
• “Eliminate States by Pole-Zero Cancellation” on page 5-50

 Choose a Low-Order Approximation Method

5-45

More About
• “Cancellation Versus Approximation” on page 5-34

5 Model Transformation

5-46

Approximate Model with Unstable or Near-Unstable Pole

This example shows how to compute a reduced-order approximation of a system using
balred when the system has unstable or near-unstable poles.

balred does not eliminate unstable poles when computing a reduced-order
approximation, because doing so would fundamentally change the system dynamics.
Instead, balred first decomposes the model into stable and unstable parts. Then,
balred reduces the stable part of the model.

Load a model with unstable poles.

load(fullfile(matlabroot,'examples','control','reduce.mat'),'gasf35unst')

gasf35unst is a 25-state SISO model with two unstable poles (> 0).

Examine the system poles to find near-unstable poles.

pzplot(gasf35unst)

axis([-0.001 0.001 -0.0004 0.0004])

 Approximate Model with Unstable or Near-Unstable Pole

5-47

The pole-zero plot shows several poles (marked by x) that are stable, but relatively close
to the imaginary axis. In your application, you might want to ensure that balred does
not discard these near-unstable poles.

To do so, calculate a reduced-order system that preserves the two stable poles within
0.0005 of the imaginary axis.

opts = balredOptions('Offset',0.0005);

gasf_arr = balred(gasf35unst,[10 15],opts);

The Offset option of balredOptions sets the boundary between poles that balred
can discard, and poles that balred must preserve (treat as unstable). Setting Offset to

5 Model Transformation

5-48

0.0005 preserves the two stable poles of gasf35unst that are closest to the imaginary
axis.

Providing balred an array of target approximation orders [10 15] causes balred to
return an array of approximated models. The array gasf_arr is contains two models —
a 10th-order and a 15th-order approximation of gasf35unst. In both approximations,
balred does not discard the two unstable poles or the two nearly-unstable poles.

Compare the reduced-order approximations to the original model.

 bodeplot(gasf35unst,gasf_arr,'r--')

The 15th order approximation is a good frequency-domain match to the original model.
However, the 10th-order approximation shows changes in high-frequency dynamics,

 Approximate Model with Unstable or Near-Unstable Pole

5-49

which might too large to be acceptable. The 15th-order approximation is probably a
better choice.

See Also
balred

Related Examples
• “Approximate Model with Lower-Order Model” on page 5-36
• “Eliminate States by Pole-Zero Cancellation” on page 5-50

More About
• “Cancellation Versus Approximation” on page 5-34

5 Model Transformation

5-50

Eliminate States by Pole-Zero Cancellation

This example shows how to use to reduce the order of a transfer function with cancelling
or near-cancelling factors in the numerator and denominator using minreal.

Canceling or near-canceling pole-zero pairs can arise from system dynamics, or from
building models using model interconnection functions.

Create a model of the following system, where C is a PI controller and G has a zero at
 rad/s. Such a low-frequency zero can arise from derivative action somewhere

in the plant dynamics. For example, the plant may include a component that computes
speed from position measurements.

G = zpk(3e-8,[-1,-3],1);

C = pid(1,0.3);

T = feedback(G*C,1)

T =

 (s+0.3) (s-3e-08)

 s (s+4.218) (s+0.7824)

Continuous-time zero/pole/gain model.

In the closed-loop model T, the integrator from C very nearly cancels the low-
frequency zero of G.

Force a cancellation of the integrator with the zero near the origin.

 Eliminate States by Pole-Zero Cancellation

5-51

Tred = minreal(T,1e-7)

Tred =

 (s+0.3)

 (s+4.218) (s+0.7824)

Continuous-time zero/pole/gain model.

By default, minreal reduces transfer function order by canceling exact pole-zero pairs
or near pole-zero pairs within sqrt(eps). Specifying 1e-7 as the second input causes
minreal to eliminate pole-zero pairs within rad/s of each other.

The reduced model Tred includes all the dynamics of the original closed-loop model T,
except for the near-canceling zero-pole pair.

Compare the frequency responses of the original and reduced systems.

bode(T,Tred,'r--')

legend('T','Tred')

5 Model Transformation

5-52

Because the canceled pole and zero do exactly match, some extreme low-frequency
dynamics evident in the original model are missing from Tred. In many applications,
you can neglect such extreme low-frequency dynamics. When you increase the matching
tolerance of minreal, make sure that you do not eliminate dynamic features that are
relevant to your application.

See Also
minreal

Related Examples
• “Approximate Model with Lower-Order Model” on page 5-36

 Eliminate States by Pole-Zero Cancellation

5-53

• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-46
• “Choose a Low-Order Approximation Method” on page 5-41

More About
• “Cancellation Versus Approximation” on page 5-34

Linear Analysis

6

Time Domain Analysis

• “Choosing a Time-Domain Analysis Command” on page 6-2
• “Time-Domain Response Data and Plots” on page 6-3
• “System Characteristics on Response Plots” on page 6-6
• “Numeric Values of Time-Domain System Characteristics” on page 6-10
• “Time-Domain Responses of Discrete-Time Model” on page 6-12
• “Time-Domain Responses of MIMO Model” on page 6-14
• “Time-Domain Responses of Multiple Models” on page 6-16
• “Joint Time- and Frequency-Domain Analysis” on page 6-20
• “Response from Initial Conditions” on page 6-25
• “Analysis of Systems with Time Delays” on page 6-28

6 Time Domain Analysis

6-2

Choosing a Time-Domain Analysis Command

When you perform time-domain analysis of a dynamic system model, you may want one
or more of the following:

• A plot of the system response as a function of time.
• Numerical values of the system response in a data array.
• Numerical values of characteristics of the system response such as peak response or

settling time.

Control System Toolbox time-domain analysis commands can obtain these results for any
kind of dynamic system model (for example, continuous or discrete, SISO or MIMO, or
arrays of models) except for frequency response data models.

To obtain numerical data, use:

• step,impulse,initial,lsim — System response data at a vector of time points.
• stepinfo,lsiminfo — Numerical values of system response characteristics such as

settling time and overshoot.

To obtain response plots, use:

• stepplot,impulseplot,initialplot,lsimplot — Plot system response data,
visualize response characteristics on plots, compare responses of multiple systems on
a single plot.

• linearSystemAnalyzer — Linear analysis tool for plotting many types of system
responses simultaneously, including both time-domain and frequency-domain
responses

Related Examples
• “Time-Domain Response Data and Plots”
• “Joint Time- and Frequency-Domain Analysis”

 Time-Domain Response Data and Plots

6-3

Time-Domain Response Data and Plots

This example shows how to obtain step and impulse response data, as well as step and
impulse response plots, from a dynamic system model.

Create a transfer function model and plot its response to a step input at t = 0.

H = tf([8 18 32],[1 6 14 24]);

stepplot(H);

stepplot plots the step response on the screen. Unless you specify a time range to plot,
stepplot automatically chooses a time range that illustrates the system dynamics.

Calculate the step response data from t = 0 (application of the step input) to t = 8 s.

[y,t] = step(H,8);

6 Time Domain Analysis

6-4

When you call step with output arguments, the command returns the step response data
y. The vector t contains corresponding time values.

Plot the response of H to an impulse input applied at t = 0. Plot the response with a grid.

opts = timeoptions;

opts.Grid = 'on';

impulseplot(H,opts)

Use the timeoptions command to define options sets for time-domain plotting
commands like impulseplot and stepplot.

Calculate 200 points of impulse response data from t = 1 (one second after application of
the impulse input) to t = 3s.

[y,t] = impulse(H,linspace(1,3,200));

 Time-Domain Response Data and Plots

6-5

As for step, you can omit the time vector to allow impulse to automatically select a
time range.

See Also
impulse | impulseplot | step | stepplot | timeoptions

Related Examples
• “System Characteristics on Response Plots” on page 6-6
• “Time-Domain Responses of Multiple Models” on page 6-16
• “Joint Time- and Frequency-Domain Analysis”

More About
• “Choosing a Time-Domain Analysis Command” on page 6-2

6 Time Domain Analysis

6-6

System Characteristics on Response Plots

This example shows how to display system characteristics such as settling time and
overshoot on step response plots.

You can use similar procedures to display system characteristics on impulse response
plots or initial value response plots, such as peak response or settling time.

Create a transfer function model and plot its response to a step input at t = 0.

H = tf([8 18 32],[1 6 14 24]);

stepplot(H)

Display the peak response on the plot.

Right-click anywhere in the figure and select Characteristics > Peak Response from
the menu.

 System Characteristics on Response Plots

6-7

A marker appears on the plot indicating the peak response. Horizontal and vertical
dotted lines indicate the time and amplitude of that response.

6 Time Domain Analysis

6-8

Click the marker to view the value of the peak response and the overshoot in a datatip.

 System Characteristics on Response Plots

6-9

You can use a similar procedure to select other characteristics such as settling time and
rise time from the Characteristics menu and view the values.

See Also
impulse | lsiminfo | step | stepinfo

Related Examples
• “Numeric Values of Time-Domain System Characteristics” on page 6-10
• “Joint Time- and Frequency-Domain Analysis”

More About
• “Choosing a Time-Domain Analysis Command” on page 6-2

6 Time Domain Analysis

6-10

Numeric Values of Time-Domain System Characteristics

This example shows how to obtain numeric values of step response characteristics such
as rise time, settling time, and overshoot using stepinfo.

You can use similar techniques with lsiminfo to obtain characteristics of the system
response to an arbitrary input or initial conditions.

Create a dynamic system model and get numeric values of the system’s step response
characteristics.

H = tf([8 18 32],[1 6 14 24]);

data = stepinfo(H)

data =

 RiseTime: 0.2087

 SettlingTime: 3.4972

 SettlingMin: 1.1956

 SettlingMax: 1.6872

 Overshoot: 26.5401

 Undershoot: 0

 Peak: 1.6872

 PeakTime: 0.6033

The output is a structure that contains values for several step response characteristics.
To access these values or refer to them in other calculations, use dot notation. For
example, data.Overshoot is the overshoot value.

Calculate the time it takes the step response of H to settle within 0.5% of its final value.

data = stepinfo(H,'SettlingTimeThreshold',0.005);

t05 = data.SettlingTime

t05 =

 4.8897

By default, stepinfo defines the settling time as the time it takes for the
output to settle within 0.02 (2%) of its final value. Specifying a more stringent
'SettlingTimeThreshold' of 0.005 results in a longer settling time.

 Numeric Values of Time-Domain System Characteristics

6-11

For more information about the options and the characteristics, see the stepinfo
reference page.

See Also
lsiminfo | stepinfo

Related Examples
• “System Characteristics on Response Plots” on page 6-6
• “Joint Time- and Frequency-Domain Analysis”

More About
• “Choosing a Time-Domain Analysis Command” on page 6-2

6 Time Domain Analysis

6-12

Time-Domain Responses of Discrete-Time Model

This example shows how to obtain a step response and step response data for a discrete-
time dynamic system model.

You can use the techniques of this example with commands such as impulse, initial,
impulseplot, and initialpot to obtain time-domain responses of discrete-time
models. Obtaining time-domain responses of discrete-time models is the same as for
continuous-time models, except that the time sample points are limited by the sample
time Ts of the model.

Create a discrete-time transfer function model and plot its response to a step input at t =
0.

H = tf([-0.06,0.4],[1,-1.6,0.78],0.1);

stepplot(H)

 Time-Domain Responses of Discrete-Time Model

6-13

For discrete-time models, stepplot plots the response at multiples of the sample time,
assuming a hold between samples.

Compute the step response of H between 0.5 and 2.5 seconds.

[y,t] = step(H,0.5:0.1:2.5);

When you specify a time vector for the response of a discrete-time model, the time step
must match the sample time Ts of the discrete-time model. The vector t contains the
time points between 0.5 and 2.5 seconds, at multiples of the sample time of H, 0.1 s. The
vector y contains the corresponding step response values.

See Also
impulse | impulseplot | initial | initialplot | step | stepplot

Related Examples
• “Time-Domain Responses of MIMO Model” on page 6-14
• “Time-Domain Responses of Multiple Models” on page 6-16
• “Joint Time- and Frequency-Domain Analysis”

More About
• “Choosing a Time-Domain Analysis Command” on page 6-2

6 Time Domain Analysis

6-14

Time-Domain Responses of MIMO Model

This example shows how to obtain impulse response data and plots for a multi-input,
multi-output (MIMO) model using impulse. You can use the same techniques to obtain
other types of time-domain responses of MIMO models.

Create a MIMO model and plot its response to a t = 0 impulse at all inputs.

H = rss(2,2,2);

H.InputName = 'Control';

H.OutputName = 'Temperature';

impulseplot(H)

 Time-Domain Responses of MIMO Model

6-15

impulseplot plots the response of each output to an impulse applied at each input.
(Because rss generates a random state-space model, you might see different responses
from those pictured.) The first column of plots shows the response of each output to an
impulse applied at the first input, Control(1). The second column shows the response
of each output to an impulse applied at the second input, Control(2).

Calculate the impulse responses of all channels of H, and examine the size of the output.

[y,t] = impulse(H);

size(y)

ans =

 207 2 2

The first dimension of the data array y is the number of samples in the time vector t.
The impulse command determines this number automatically if you do not supply a
time vector. The remaining dimensions of y are the numbers of outputs and inputs in H.
Thus, y(:,i,j) is the response at the i th output of H to an impulse applied at the j th
input.

See Also
impulse | impulseplot | initial | initialplot | step | stepplot

Related Examples
• “Time-Domain Responses of Multiple Models” on page 6-16
• “Joint Time- and Frequency-Domain Analysis”

More About
• “Choosing a Time-Domain Analysis Command” on page 6-2

6 Time Domain Analysis

6-16

Time-Domain Responses of Multiple Models

This example shows how to compare the step responses of multiple models on a single
plot using step. This example compares the step response of an uncontrolled plant to the
closed-loop step response of the plant with two different PI controllers.

You can use similar techniques with other response commands, such as impulse or
initial, to obtain plots of responses of multiple models.

Obtain two models whose time responses you want to compare, and plot them on a single
step plot.

For example, you can compare a third-order plant G, and the closed-loop response of G
with a controller C1 having integral action.

G = zpk([],[-5 -5 -10],100);

C1 = pid(0,4.4);

CL1 = feedback(G*C1,1);

step(G,CL1);

 Time-Domain Responses of Multiple Models

6-17

When you provide multiple models to step as input arguments, the command displays
the responses of both models on the same plot. If you do not specify a time range to plot,
step attempts to choose a time range that illustrates the dynamics of all the models.

Compare the step response of the closed-loop model with another controller. Specify plot
colors and styles for each response.

C2 = pid(2.9,7.1);

CL2 = feedback(G*C2,1);

step(G,'b--',CL1,'g-',CL2,'r-')

6 Time Domain Analysis

6-18

You can use formatting strings to specify plot color and style for each response in the
plot. For example, 'g-' specifies a solid green line for response CL2. For additional plot
customization options, use stepplot.

See Also
impulse | impulseplot | initial | initialplot | linearSystemAnalyzer |
step | stepplot

Related Examples
• “Time-Domain Responses of MIMO Model” on page 6-14
• “Joint Time- and Frequency-Domain Analysis” on page 6-20

 Time-Domain Responses of Multiple Models

6-19

More About
• “Choosing a Time-Domain Analysis Command” on page 6-2

6 Time Domain Analysis

6-20

Joint Time- and Frequency-Domain Analysis

This example shows how to compare multiple types of responses side by side, including
both time-domain and frequency-domain responses, using the interactive Linear System
Analyzer tool.

Obtain models whose responses you want to compare.

For example, compare a third-order plant G, and the closed-loop responses of G with two
different controllers, C1 and C2.

G = zpk([],[-5 -5 -10],100);

C1 = pid(0,4.4);

T1 = feedback(G*C1,1);

C2 = pid(2.9,7.1);

T2 = feedback(G*C2,1);

Open the Linear System Analyzer tool to examine the responses of the plant and the
closed-loop systems.

linearSystemAnalyzer(G,T1,T2)

 Joint Time- and Frequency-Domain Analysis

6-21

By default, the Linear System Analyzer launches with a plot of the step response of the

three systems. Click to add a legend to the plot.

Add plots of the impulse responses to the Linear System Analyzer display.

In the Linear System Analyzer, select Edit > Plot Configurations to open the Plot
Configurations dialog box.

6 Time Domain Analysis

6-22

Select the two-plot configuration. In the Response Type area, select Bode Magnitude for
the second plot type.

Click OK to add the Bode plots to the Linear System Analyzer display.

Display the peak values of the Bode responses on the plot.

Right-click anywhere in the Bode Magnitude plot and select Characteristics > Peak
Response from the menu.

 Joint Time- and Frequency-Domain Analysis

6-23

Markers appear on the plot indicating the peak response values. Horizontal and vertical
dotted lines indicate the frequency and amplitude of those responses. Click on a marker
to view the value of the peak response in a datatip.

You can use a similar procedure to select other characteristics such as settling time and
rise time from the Characteristics menu and view the values.

You can also change the type of plot displayed in the Linear System Analyzer. For
example, to change the first plot type to a plot of the impulse response, right-click
anywhere in the plot. Select Plot Types > Impulse

6 Time Domain Analysis

6-24

The displayed plot changes to show the impulse of the three systems.

See Also
impulse | impulseplot | initial | initialplot | linearSystemAnalyzer |
step | stepplot

Related Examples
• “Time-Domain Responses of Multiple Models” on page 6-16

More About
• “Choosing a Time-Domain Analysis Command” on page 6-2

 Response from Initial Conditions

6-25

Response from Initial Conditions

This example shows how to compute and plot the response of a state-space (ss) model to
specified initial state values using initialplot and initial.

Load a state-space model.

load ltiexamples sys_dc

sys_dc.InputName = 'Volts';

sys_dc.OutputName = 'w';

sys_dc.StateName = {'Current','w'};

sys_dc

sys_dc =

 a =

 Current w

 Current -4 -0.03

 w 0.75 -10

 b =

 Volts

 Current 2

 w 0

 c =

 Current w

 w 0 1

 d =

 Volts

 w 0

Continuous-time state-space model.

This example uses the SISO, 2-state model sys_dc. This model represents a DC motor.
The input is an applied voltage, and the output is the angular rate of the motor ω. The
states of the model are the induced current (x1), and ω (x2). The model display in the
command window shows the labeled input, output, and states.

Plot the undriven evolution of the motor's angular rate from an initial state in which the
induced current is 1.0 amp and the initial rotation rate is 5.0 rad/s.

6 Time Domain Analysis

6-26

x0 = [1.0 5.0];

initialplot(sys_dc,x0)

initialplot plots the time evolution from the specified initial condition on the screen.
Unless you specify a time range to plot, impulse automatically chooses a time range that
illustrates the system dynamics.

Calculate the time evolution of the output and the states of sys_dc from = 0
(application of the step input) to = 1 s.

t = 0:0.01:1;

[y,t,x] = initial(sys_dc,x0,t);

 Response from Initial Conditions

6-27

The vector y contains the output at each time step in t. The array x contains the state
values at each time step. Therefore, in this example x is a 2-by-101 array. Each row of x
contains the values of the two states of sys_dc at the corresponding time step.

See Also
impulse | initial | initialplot | step

Related Examples
• “Time-Domain Response Data and Plots” on page 6-3
• “Numeric Values of Time-Domain System Characteristics” on page 6-10

More About
• “Choosing a Time-Domain Analysis Command” on page 6-2

6 Time Domain Analysis

6-28

Analysis of Systems with Time Delays

You can use analysis commands such as step, bode, or margin to analyze systems with
time delays. The software makes no approximations when performing such analysis.

For example, consider the following control loop, where the plant is modeled as first-
order plus dead time:

You can model the closed-loop system from r to y with the following commands:

s = tf('s');

P = 5*exp(-3.4*s)/(s+1);

C = 0.1 * (1 + 1/(5*s));

T = feedback(P*C,1);

T is a state-space model with an internal delay. For more information about models with
internal delays, see “Closing Feedback Loops with Time Delays”.

Plot the step response of T:

stepplot(T)

 Analysis of Systems with Time Delays

6-29

For more complicated interconnections, you can name the input and output signals
of each block and use connect to automatically take care of the wiring. Suppose, for
example, that you want to add feedforward to the control loop of the previous model.

6 Time Domain Analysis

6-30

You can derive the corresponding closed-loop model Tff by

F = 0.3/(s+4);

P.InputName = 'u';

P.OutputName = 'y';

C.InputName = 'e';

C.OutputName = 'uc';

F.InputName = 'r';

F.OutputName = 'uf';

Sum1 = sumblk('e','r','y','+-'); % e = r-y

Sum2 = sumblk('u','uf','uc','++'); % u = uf+uc

Tff = connect(P,C,F,Sum1,Sum2,'r','y');

and compare its response with the feedback only design.

stepplot(T,Tff)

legend('No feedforward','Feedforward')

 Analysis of Systems with Time Delays

6-31

The state-space representation keeps track of the internal delays in both models.

Considerations to Keep in Mind when Analyzing Systems with Internal
Time Delays

The time and frequency responses of delay systems can look odd and suspicious to those
only familiar with delay-free LTI analysis. Time responses can behave chaotically, Bode
plots can exhibit gain oscillations, etc. These are not software or numerical quirks but
real features of such systems. Below are a few illustrations of these phenomena.

Gain ripple:

s = tf('s');

6 Time Domain Analysis

6-32

G = exp(-5*s)/(s+1);

T = feedback(G,.5);

bodemag(T)

Gain oscillations:

G = 1 + 0.5 * exp(-3*s);

bodemag(G)

 Analysis of Systems with Time Delays

6-33

Jagged step response:

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);

T = feedback(G,1);

stepplot(T)

6 Time Domain Analysis

6-34

Note the rearrivals (echoes) of the initial step function.

Chaotic response:

G = 1/(s+1) + exp(-4*s);

T = feedback(1,G);

stepplot(T,150)

 Analysis of Systems with Time Delays

6-35

You can use Control System Toolbox tools to model and analyze these and other strange-
appearing artifacts of internal delays.

Related Examples
• “Closing Feedback Loops with Time Delays”

More About
• “Modeling Time Delays”
• “Internal Delays”

7

Frequency Domain Analysis

• “Choosing a Frequency-Domain Analysis Command” on page 7-2
• “Frequency Response of a SISO System” on page 7-4
• “Frequency Response of a MIMO System” on page 7-6
• “System Characteristics on Response Plots” on page 7-10
• “Numeric Values of Frequency-Domain Characteristics of SISO Model” on page

7-13
• “Pole and Zero Locations” on page 7-16
• “Assessing Gain and Phase Margins” on page 7-19
• “Analyzing Control Systems with Delays” on page 7-33
• “Analyzing the Response of an RLC Circuit” on page 7-49

7 Frequency Domain Analysis

7-2

Choosing a Frequency-Domain Analysis Command

When you perform time-domain analysis of a dynamic system model, you may want one
or more of the following:

• A plot of the system response as a function of frequency, or plots of pole and zero
locations.

• Numerical values of the system response in a data array.
• Numerical values of characteristics of the system response such as stability margins,

peak gains, or singular values.

Control System Toolbox frequency-domain analysis commands can obtain these results
for any kind of dynamic system model (for example, continuous or discrete, SISO or
MIMO, or arrays of models).

To obtain numerical data, use:

• bode,bodemag,freqresp,nichols,nyquist — System response data at a vector of
frequency points.

• margin,getPeakGain,getGainCrossover,sigma — Numerical values of system
response characteristics such as gain margins, phase margins, and singular values.

To obtain response plots, use:

• bodeplot,nicholsplot,nyquistplot,sigmaplot — Plot system response data,
visualize response characteristics on plots, compare responses of multiple systems on
a single plot.

• linearSystemAnalyzer — Linear analysis tool for plotting many types of system
responses simultaneously, including both time-domain and frequency-domain
responses

To obtain pole-zero maps, use:

• pzplot, iopzplot — Plot pole and zero locations in the complex plane.

If you have a generalized state-space (genss) model of a control system, you can extract
various transfer functions from it for analysis using frequency-domain and time-domain
analysis commands. Extract responses from such models using getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity.

 Choosing a Frequency-Domain Analysis Command

7-3

Related Examples
• “Frequency Response of a SISO System”
• “Frequency Response of a MIMO System”
• “Joint Time- and Frequency-Domain Analysis”

7 Frequency Domain Analysis

7-4

Frequency Response of a SISO System
This example shows how to plot the frequency response and obtain frequency response
data for a single-input, single-output (SISO) dynamic system model.

Create a transfer function model and plot its frequency response.

H = tf([10,21],[1,1.4,26]);

bodeplot(H)

bodeplot plots the frequency response on the screen. Unless you specify a time range to
plot, stepplot automatically chooses a time range that illustrates the system dynamics.

Calculate the frequency response between 1 and 13 rad/s.

 Frequency Response of a SISO System

7-5

[mag,phase,w] = bode(H,{1,13});

When you call bode with output arguments, the command returns vectors mag and
phase containing the magnitude and phase of the frequency response. The cell array
input {1,13} tells bode to calculate the response at a grid of frequencies between 1 and
13 rad/s. bode returns the frequency points in the vector w.

See Also
bode | bodeoptions | bodeplot

Related Examples
• “Frequency Response of a MIMO System” on page 7-6
• “Numeric Values of Frequency-Domain Characteristics of SISO Model” on page

7-13

More About
• “Choosing a Frequency-Domain Analysis Command” on page 7-2

7 Frequency Domain Analysis

7-6

Frequency Response of a MIMO System

This example shows how to examine the frequency response of a multi-input, multi-
output (MIMO) system in two ways: by computing the frequency response, and by
computing the singular values.

Calculate the frequency response of a MIMO model and examine the size of the output.

H = rss(2,2,2);

H.InputName = 'Control';

H.OutputName = 'Temperature';

[mag,phase,w] = bode(H);

size(mag)

ans =

 2 2 70

The first and second dimension of the data array mag are the number of outputs and
inputs of H. The third dimension is the number of points in the frequency vector w. (The
bode command determines this number automatically if you do not supply a frequency
vector.) Thus, mag(i,j,:) is the frequency response from the j th input of H to the i th
output, in absolute units. The phase data array phase takes the same form as mag.

Plot the frequency response of each input/output pair in H.

bodeplot(H)

 Frequency Response of a MIMO System

7-7

bodeplot plots the magnitude and the phase of the frequency response of each input/
output pair in H. (Because rss generates a random state-space model, you might see
different responses from those pictured.) The first column of plots shows the response
from the first input, Control(1), to each output. The second column shows the response
from the second input, Control(2), to each output.

Plot the singular values of H as a function of frequency.

sigmaplot(H)

7 Frequency Domain Analysis

7-8

sigmaplot plots the singular values of the MIMO system H as a function of frequency.
The maximum singular value at a particular frequency is the maximum gain of the
system over all linear combinations of inputs at that frequency. Singular values can
provide a better indication of the overall response, stability, and conditioning of a MIMO
system than a channel-by-channel Bode plot.

Calculate the singular values of H between 0.1 and 10 rad/s.

[sv,w] = sigma(H,{0.1,10});

When you call sigma with output arguments, the command returns the singular values
in the data array sv. The cell array input {0.1,10} tells sigma to calculate the singular

 Frequency Response of a MIMO System

7-9

values at a grid of frequencies between 0.1 and 10 rad/s. sigma returns these frequencies
in the vector w. Each row of sv contains the singular values of H at the frequencies of w.

See Also
bode | bodeplot | sigma | sigmaplot

Related Examples
• “Numeric Values of Frequency-Domain Characteristics of SISO Model”
• “Joint Time- and Frequency-Domain Analysis”

7 Frequency Domain Analysis

7-10

System Characteristics on Response Plots

This example shows how to display system characteristics such as peak response on Bode
response plots.

You can use similar procedures to display system characteristics on other types of
response plots.

Create a transfer function model and plot its frequency response.

H = tf([10,21],[1,1.4,26]);

bodeplot(H)

Display the peak response on the plot.

Right-click anywhere in the figure and select Characteristics > Peak Response from
the menu.

 System Characteristics on Response Plots

7-11

A marker appears on the plot indicating the peak response. Horizontal and vertical
dotted lines indicate the frequency and magnitude of that response. The other menu
options add other system characteristics to the plot.

7 Frequency Domain Analysis

7-12

Click the marker to view the magnitude and frequency of the peak response in a datatip.

Related Examples
• “Numeric Values of Frequency-Domain Characteristics of SISO Model”
• “Joint Time- and Frequency-Domain Analysis”
• “Pole and Zero Locations”

 Numeric Values of Frequency-Domain Characteristics of SISO Model

7-13

Numeric Values of Frequency-Domain Characteristics of SISO
Model

This example shows how to obtain numeric values of several frequency-domain
characteristics of a SISO dynamic system model, including the peak gain, dc gain, system
bandwidth, and the frequencies at which the system gain crosses a specified frequency.

Create a transfer function model and plot its frequency response.

H = tf([10,21],[1,1.4,26]);

bodeplot(H)

Plotting the frequency response gives a rough idea of the frequency-domain
characteristics of the system. H includes a pronounced resonant peak, and rolls off at 20
dB/decade at high frequency. It is often desirable to obtain specific numeric values for
such characteristics.

7 Frequency Domain Analysis

7-14

Calculate the peak gain and the frequency of the resonance.

[gpeak,fpeak] = getPeakGain(H);

gpeak_dB = mag2db(gpeak)

gpeak_dB =

 17.7579

getPeakGain returns both the peak location fpeak and the peak gain gpeak in absolute
units. Using mag2db to convert gpeak to decibels shows that the gain peaks at almost 18
dB.

Find the band within which the system gain exceeds 0 dB, or 1 in absolute units.

wc = getGainCrossover(H,1)

wc =

 1.2582

 12.1843

getGainCrossover returns a vector of frequencies at which the system response crosses
the specified gain. The resulting wc vector shows that the system gain exceeds 0 dB
between about 1.3 and 12.2 rad/s.

Find the dc gain of H.

The Bode response plot shows that the gain of H tends toward a finite value as the
frequency approaches zero. The dcgain command finds this value in absolute units.

k = dcgain(H);

Find the frequency at which the response of H rolls off to –10 dB relative to its dc value.

fb = bandwidth(H,-10);

bandwidth returns the first frequency at which the system response drops below the dc
gain by the specified value in dB.

See Also
bandwidth | getGainCrossover | getPeakGain

 Numeric Values of Frequency-Domain Characteristics of SISO Model

7-15

Related Examples
• “Pole and Zero Locations”

More About
• “Choosing a Frequency-Domain Analysis Command”

7 Frequency Domain Analysis

7-16

Pole and Zero Locations

This example shows how to examine the pole and zero locations of dynamic systems both
graphically using pzplot and numerically using pole and zero.

Examining the pole and zero locations can be useful for tasks such as stability analysis
or identifying near-canceling pole-zero pairs for model simplification. This example
compares two closed-loop systems that have the same plant and different controllers.

Create dynamic system models representing the two closed-loop systems.

G = zpk([],[-5 -5 -10],100);

C1 = pid(2.9,7.1);

CL1 = feedback(G*C1,1);

C2 = pid(29,7.1);

CL2 = feedback(G*C2,1);

The controller C2 has a much higher proportional gain. Otherwise, the two closed-loop
systems CL1 and CL2 are the same.

Graphically examine the pole and zero locations of CL1 and CL2.

pzplot(CL1,CL2)

grid

 Pole and Zero Locations

7-17

pzplot plots pole and zero locations on the complex plane as x and o marks,
respectively. When you provide multiple models, pzplot plots the poles and zeros of each
model in a different color. Here, there poles and zeros of CL1 are blue, and those of CL2
are green.

The plot shows that all poles of CL1 are in the left half-plane, and therefore CL1 is
stable. From the radial grid markings on the plot, you can read that the damping of the
oscillating (complex) poles is approximately 0.45. The plot also shows that CL2 contains
poles in the right half-plane and is therefore unstable.

Compute numerical values of the pole and zero locations of CL2.

z = zero(CL2);

7 Frequency Domain Analysis

7-18

p = pole(CL2);

zero and pole return column vectors containing the zero and pole locations of the
system.

See Also
pole | pzplot | zero

Related Examples
• “Numeric Values of Frequency-Domain Characteristics of SISO Model”

More About
• “Choosing a Frequency-Domain Analysis Command”

 Assessing Gain and Phase Margins

7-19

Assessing Gain and Phase Margins

This example shows how to examine the effect of stability margins on closed-loop
response characteristics of a control system.

Stability of a Feedback Loop

Stability generally means that all internal signals remain bounded. This is a standard
requirement for control systems to avoid loss of control and damage to equipment. For
linear feedback systems, stability can be assessed by looking at the poles of the closed-
loop transfer function. Consider for example the SISO feedback loop:

Figure 1: SISO Feedback Loop.

For a unit loop gain k, you can compute the closed-loop transfer function T using:

G = tf([.5 1.3],[1 1.2 1.6 0]);

T = feedback(G,1);

To obtain the poles of T, type

pole(T)

ans =

 -0.2305 + 1.3062i

 -0.2305 - 1.3062i

 -0.7389 + 0.0000i

The feedback loop for k=1 is stable since all poles have negative real parts.

7 Frequency Domain Analysis

7-20

How Stable is Stable?

Checking the closed-loop poles gives us a binary assessment of stability. In practice, it is
more useful to know how robust (or fragile) stability is. One indication of robustness is
how much the loop gain can change before stability is lost. You can use the root locus plot
to estimate the range of k values for which the loop is stable:

rlocus(G)

Clicking on the point where the locus intersects the y axis reveals that this feedback loop
is stable for

 Assessing Gain and Phase Margins

7-21

This range shows that with k=1, the loop gain can increase 270% before you lose
stability.

Gain and Phase Margins

Changes in the loop gain are only one aspect of robust stability. In general, imperfect
plant modeling means that both gain and phase are not known exactly. Because
modeling errors are most damaging near the gain crossover frequency (frequency where
open-loop gain is 0dB), it also matters how much phase variation can be tolerated at this
frequency.

The phase margin measures how much phase variation is needed at the gain crossover
frequency to lose stability. Similarly, the gain margin measures what relative gain
variation is needed at the gain crossover frequency to lose stability. Together, these two
numbers give an estimate of the "safety margin" for closed-loop stability. The smaller the
stability margins, the more fragile stability is.

You can display the gain and phase margins on a Bode plot as follows. First create the
plot:

bode(G), grid

7 Frequency Domain Analysis

7-22

Then, right-click on the plot and select the Characteristics -> Minimum Stability
Margins submenu. Finally, click on the blue dot markers. The resulting plot is shown
below:

 Assessing Gain and Phase Margins

7-23

This indicates a gain margin of about 9 dB and a phase margin of about 45 degrees.
The corresponding closed-loop step response exhibits about 20% overshoot and some
oscillations.

step(T), title('Closed-loop response for k=1')

7 Frequency Domain Analysis

7-24

If we increase the gain to k=2, the stability margins are reduced to

[Gm,Pm] = margin(2*G);

GmdB = 20*log10(Gm) % gain margin in dB

Pm % phase margin in degrees

GmdB =

 2.7471

Pm =

 Assessing Gain and Phase Margins

7-25

 8.6328

and the closed-loop response has poorly damped oscillations, a sign of near instability.

step(feedback(2*G,1)), title('Closed-loop response for k=2')

Systems with Multiple Gain or Phase Crossings

Some systems have multiple gain crossover or phase crossover frequencies, which leads
to multiple gain or phase margin values. For example, consider the feedback loop

7 Frequency Domain Analysis

7-26

Figure 2: Feedback Loop with Multiple Phase Crossovers

The closed-loop response for k=1 is stable:

G = tf(20,[1 7]) * tf([1 3.2 7.2],[1 -1.2 0.8]) * tf([1 -8 400],[1 33 700]);

T = feedback(G,1);

step(T), title('Closed-loop response for k=1')

 Assessing Gain and Phase Margins

7-27

To assess how robustly stable this loop is, plot its Bode response:

bode(G), grid

7 Frequency Domain Analysis

7-28

Then, right-click on the plot and select the Characteristics -> All Stability Margins
submenu to show all the crossover frequencies and associated stability margins. The
resulting plot is shown below.

 Assessing Gain and Phase Margins

7-29

Note that there are two 180 deg phase crossings with corresponding gain margins of
-9.35dB and +10.6dB. Negative gain margins indicate that stability is lost by decreasing
the gain, while positive gain margins indicate that stability is lost by increasing the gain.
This is confirmed by plotting the closed-loop step response for a plus/minus 6dB gain
variation about k=1:

k1 = 2; T1 = feedback(G*k1,1);

k2 = 1/2; T2 = feedback(G*k2,1);

step(T,'b',T1,'r',T2,'g',12),

legend('k = 1','k = 2','k = 0.5')

7 Frequency Domain Analysis

7-30

The plot shows increased oscillations for both smaller and larger gain values.

You can use the command allmargin to compute all stability margins. Note that gain
margins are expressed as gain ratios, not dB. Use mag2db to convert the values to dB.

m = allmargin(G)

GainMargins_dB = mag2db(m.GainMargin)

m =

 GainMargin: [0.3408 3.3920]

 GMFrequency: [1.9421 16.4807]

 Assessing Gain and Phase Margins

7-31

 PhaseMargin: 68.1178

 PMFrequency: 7.0762

 DelayMargin: 0.1680

 DMFrequency: 7.0762

 Stable: 1

GainMargins_dB =

 -9.3510 10.6091

Interactive GUI

To gain additional insight into the connection between stability margins and closed-loop
responses, click on the link below to launch an interactive GUI for tuning the loop gain k
and seeing the effect on margins and closed-loop responses.

Open the Gain and Phase Margin GUI

margin_gui

7 Frequency Domain Analysis

7-32

See Also
margin | pole

Related Examples
• “Pole and Zero Locations”

 Analyzing Control Systems with Delays

7-33

Analyzing Control Systems with Delays

This example shows how to use Control System Toolbox™ to analyze and design control
systems with delays.

Control of Processes with Delays

Many processes involve dead times, also referred to as transport delays or time lags.
Controlling such processes is challenging because delays cause linear phase shifts that
limit the control bandwidth and affect closed-loop stability.

Using the state-space representation, you can create accurate open- or closed-loop models
of control systems with delays and analyze their stability and performance without
approximation. The state-space (SS) object automatically keeps track of "internal" delays
when combining models, see the "Specifying Time Delays" tutorial for more details.

Example: PI Control Loop with Dead Time

Consider the standard setpoint tracking loop:

where the process model P has a 2.6 second dead time and the compensator C is a PI
controller:

You can specify these two transfer functions as

s = tf('s');

P = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);

C = 0.06 * (1 + 1/s);

To analyze the closed-loop response, construct a model T of the closed-loop transfer from
ysp to y. Because there is a delay in this feedback loop, you must convert P and C to state
space and use the state-space representation for analysis:

7 Frequency Domain Analysis

7-34

T = feedback(P*C,1)

T =

 a =

 x1 x2 x3

 x1 -0.36 -1.24 -0.18

 x2 1 0 0

 x3 0 1 0

 b =

 u1

 x1 0.5

 x2 0

 x3 0

 c =

 x1 x2 x3

 y1 0.12 0.48 0.36

 d =

 u1

 y1 0

 (values computed with all internal delays set to zero)

 Internal delays (seconds): 2.6

Continuous-time state-space model.

The result is a third-order model with an internal delay of 2.6 seconds. Internally, the
state-space object T tracks how the delay is coupled with the remaining dynamics.
This structural information is not visible to users, and the display above only gives the
A,B,C,D values when the delay is set to zero.

Use the STEP command to plot the closed-loop step response from ysp to y:

step(T)

 Analyzing Control Systems with Delays

7-35

The closed-loop oscillations are due to a weak gain margin as seen from the open-loop
response P*C:

margin(P*C)

7 Frequency Domain Analysis

7-36

There is also a resonance in the closed-loop frequency response:

bode(T)

grid, title('Closed-loop frequency response')

 Analyzing Control Systems with Delays

7-37

To improve the design, you can try to notch out the resonance near 1 rad/s:

notch = tf([1 0.2 1],[1 .8 1]);

C = 0.05 * (1 + 1/s);

Tnotch = feedback(P*C*notch,1);

step(Tnotch), grid

7 Frequency Domain Analysis

7-38

Pade Approximation of Time Delays

Many control design algorithms cannot handle time delays directly. A common
workaround consists of replacing delays by their Pade approximations (all-pass filters).
Because this approximation is only valid at low frequencies, it is important to compare
the true and approximate responses to choose the right approximation order and check
the approximation validity.

Use the PADE command to compute Pade approximations of LTI models with delays. For
the PI control example above, you can compare the exact closed-loop response T with the
response obtained for a first-order Pade approximation of the delay:

T1 = pade(T,1);

 Analyzing Control Systems with Delays

7-39

step(T,'b',T1,'r',100)

grid, legend('Exact','First-Order Pade')

The approximation error is fairly large. To get a better approximation, try a second-order
Pade approximation of the delay:

T2 = pade(T,2);

step(T,'b',T2,'r',100)

grid, legend('Exact','Second-Order Pade')

7 Frequency Domain Analysis

7-40

The responses now match closely except for the non-minimum phase artifact introduced
by the Pade approximation.

Sensitivity Analysis

Delays are rarely known accurately, so it is often important to understand how sensitive
a control system is to the delay value. Such sensitivity analysis is easily performed using
LTI arrays and the InternalDelay property.

For example, to analyze the sensitivity of the notched PI control above, create 5 models
with delay values ranging from 2.0 to 3.0:

tau = linspace(2,3,5); % 5 delay values

Tsens = repsys(Tnotch,[1 1 5]); % 5 copies of Tnotch

 Analyzing Control Systems with Delays

7-41

for j=1:5

 Tsens(:,:,j).InternalDelay = tau(j); % jth delay value -> jth model

end

Then use STEP to create an envelope plot:

step(Tsens)

grid, title('Closed-loop response for 5 delay values between 2.0 and 3.0')

This plot shows that uncertainty on the delay value has little effect on closed-loop
characteristics. Note that while you can change the values of internal delays, you cannot
change how many there are because this is part of the model structure. To eliminate
some internal delays, set their value to zero or use PADE with order zero:

7 Frequency Domain Analysis

7-42

Tnotch0 = Tnotch;

Tnotch0.InternalDelay = 0;

bode(Tnotch,'b',Tnotch0,'r',{1e-2,3})

grid, legend('Delay = 2.6','No delay','Location','SouthWest')

Discretization

You can use C2D to discretize continuous-time delay systems. Available methods include
zero-order hold (ZOH), first-order hold (FOH), and Tustin. For models with internal
delays, the ZOH discretization is not always "exact," i.e., the continuous and discretized
step responses may not match:

Td = c2d(T,1);

step(T,'b',Td,'r')

 Analyzing Control Systems with Delays

7-43

grid, legend('Continuous','ZOH Discretization')

Warning: Discretization is only approximate due to internal delays. Use faster

sampling rate if discretization error is large.

To correct such discretization gaps, reduce the sampling period until the continuous and
discrete responses match closely:

Td = c2d(T,0.05);

step(T,'b',Td,'r')

grid, legend('Continuous','ZOH Discretization')

Warning: Discretization is only approximate due to internal delays. Use faster

sampling rate if discretization error is large.

7 Frequency Domain Analysis

7-44

Note that internal delays remain internal in the discretized model and do not inflate the
model order:

order(Td)

Td.InternalDelay

ans =

 3

ans =

 Analyzing Control Systems with Delays

7-45

 52

Some Unique Features of Delay Systems

The time and frequency responses of delay systems can look bizarre and suspicious to
those only familiar with delay-free LTI analysis. Time responses can behave chaotically,
Bode plots can exhibit gain oscillations, etc. These are not software quirks but real
features of such systems. Below are a few illustrations of these phenomena

Gain ripples:

G = exp(-5*s)/(s+1);

T = feedback(G,.5);

bodemag(T)

7 Frequency Domain Analysis

7-46

Gain oscillations:

G = 1 + 0.5 * exp(-3*s);

bodemag(G)

Jagged step response (note the "echoes" of the initial step):

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);

T = feedback(G,1);

step(T)

 Analyzing Control Systems with Delays

7-47

Chaotic response:

G = 1/(s+1) + exp(-4*s);

T = feedback(1,G);

step(T)

7 Frequency Domain Analysis

7-48

See Also
margin | pade

Related Examples
• “Analyzing the Response of an RLC Circuit”

More About
• “Modeling Time Delays”
• “Time-Delay Approximation”

 Analyzing the Response of an RLC Circuit

7-49

Analyzing the Response of an RLC Circuit

This example shows how to analyze the time and frequency responses of common RLC
circuits as a function of their physical parameters using Control System Toolbox™
functions.

Bandpass RLC Network

The following figure shows the parallel form of a bandpass RLC circuit:

Figure 1: Bandpass RLC Network.

The transfer function from input to output voltage is:

7 Frequency Domain Analysis

7-50

The product LC controls the bandpass frequency while RC controls how narrow the
passing band is. To build a bandpass filter tuned to the frequency 1 rad/s, set L=C=1 and
use R to tune the filter band.

Analyzing the Frequency Response of the Circuit

The Bode plot is a convenient tool for investigating the bandpass characteristics of the
RLC network. Use tf to specify the circuit's transfer function for the values

%|R=L=C=1|:

R = 1; L = 1; C = 1;

G = tf([1/(R*C) 0],[1 1/(R*C) 1/(L*C)])

G =

 s

 s^2 + s + 1

Continuous-time transfer function.

Next, use bode to plot the frequency response of the circuit:

bode(G), grid

 Analyzing the Response of an RLC Circuit

7-51

As expected, the RLC filter has maximum gain at the frequency 1 rad/s. However, the
attenuation is only -10dB half a decade away from this frequency. To get a narrower
passing band, try increasing values of R as follows:

R1 = 5; G1 = tf([1/(R1*C) 0],[1 1/(R1*C) 1/(L*C)]);

R2 = 20; G2 = tf([1/(R2*C) 0],[1 1/(R2*C) 1/(L*C)]);

bode(G,'b',G1,'r',G2,'g'), grid

legend('R = 1','R = 5','R = 20')

7 Frequency Domain Analysis

7-52

The resistor value R=20 gives a filter narrowly tuned around the target frequency of 1
rad/s.

Analyzing the Time Response of the Circuit

We can confirm the attenuation properties of the circuit G2 (R=20) by simulating how
this filter transforms sine waves with frequency 0.9, 1, and 1.1 rad/s:

t = 0:0.05:250;

opt = timeoptions;

opt.Title.FontWeight = 'Bold';

subplot(311), lsim(G2,sin(t),t,opt), title('w = 1')

subplot(312), lsim(G2,sin(0.9*t),t,opt), title('w = 0.9')

subplot(313), lsim(G2,sin(1.1*t),t,opt), title('w = 1.1')

 Analyzing the Response of an RLC Circuit

7-53

The waves at 0.9 and 1.1 rad/s are considerably attenuated. The wave at 1 rad/s comes
out unchanged once the transients have died off. The long transient results from the
poorly damped poles of the filters, which unfortunately are required for a narrow passing
band:

damp(pole(G2))

 Pole Damping Frequency Time Constant

 (rad/TimeUnit) (TimeUnit)

 -2.50e-02 + 1.00e+00i 2.50e-02 1.00e+00 4.00e+01

 -2.50e-02 - 1.00e+00i 2.50e-02 1.00e+00 4.00e+01

7 Frequency Domain Analysis

7-54

Interactive GUI

To analyze other standard circuit configurations such as low-pass and high-pass RLC
networks, click on the link below to launch an interactive GUI. In this GUI, you can
change the R,L,C parameters and see the effect on the time and frequency responses in
real time.

Open the RLC Circuit GUI

rlc_gui

 Analyzing the Response of an RLC Circuit

7-55

See Also
bodeplot | lsim | stepplot

Related Examples
• “Joint Time- and Frequency-Domain Analysis”

8

Sensitivity Analysis

• “Model Array with Single Parameter Variation” on page 8-2
• “Model Array with Variations in Two Parameters” on page 8-5
• “Study Parameter Variation by Sampling Tunable Model” on page 8-8
• “Sensitivity of Control System to Time Delays” on page 8-11

8 Sensitivity Analysis

8-2

Model Array with Single Parameter Variation

This example shows how to create a one-dimensional array of transfer functions using
the stack command. One parameter of the transfer function varies from model to model
in the array. You can use such an array to investigate the effect of parameter variation
on your model, such as for sensitivity analysis.

Create an array of transfer functions representing the following low-pass filter at three
values of the roll-off frequency, a.

Create transfer function models representing the filter with roll-off frequency at a = 3, 5,
and 7.

F1 = tf(3,[1 3]);

F2 = tf(5,[1 5]);

F3 = tf(7,[1 7]);

Use the stack command to build an array.

Farray = stack(1,F1,F2,F3);

The first argument to stack specifies the array dimension along which stack builds an
array. The remaining arguments specify the models to arrange along that dimension.
Thus, Farray is a 3-by-1 array of transfer functions.

Concatenating models with MATLAB® array concatenation commands, instead of with
stack, creates multi-input, multi-output (MIMO) models rather than model arrays. For
example:

G = [F1;F2;F3];

creates a one-input, three-output transfer function model, not a 3-by-1 array.

When working with a model array that represents parameter variations, You can
associate the corresponding parameter value with each entry in the array. Set the
SamplingGrid property to a data structure that contains the name of the parameter
and the sampled parameter values corresponding with each model in the array. This
assignment helps you keep track of which model corresponds to which parameter value.

 Model Array with Single Parameter Variation

8-3

Farray.SamplingGrid = struct('alpha',[3 5 7]);

Farray

Farray(:,:,1,1) [alpha=3] =

 3

 s + 3

Farray(:,:,2,1) [alpha=5] =

 5

 s + 5

Farray(:,:,3,1) [alpha=7] =

 7

 s + 7

3x1 array of continuous-time transfer functions.

The parameter values in Farray.SamplingGrid are displayed along with the each
transfer function in the array.

Plot the frequency response of the array to examine the effect of parameter variation on
the filter behavior.

bodeplot(Farray)

8 Sensitivity Analysis

8-4

When you use analysis commands such as bodeplot on a model array, the resulting
plot shows the response of each model in the array. Therefore, you can see the range of
responses that results from the parameter variation.

 Model Array with Variations in Two Parameters

8-5

Model Array with Variations in Two Parameters

This example shows how to create a two-dimensional (2-D) array of transfer functions
using for loops. One parameter of the transfer function varies in each dimension of the
array.

You can use the technique of this example to create higher-dimensional arrays with
variations of more parameters. Such arrays are useful for studying the effects of
multiple-parameter variations on system response.

The second-order single-input, single-output (SISO) transfer function

depends on two parameters: the damping ratio, , and the natural frequency, . If both
and vary, you obtain multiple transfer functions of the form:

where and represent different measurements or sampled values of the variable
parameters. You can collect all of these transfer functions in a single variable to create a
two-dimensional model array.

Preallocate memory for the model array. Preallocating memory is an optional step that
can enhance computation efficiency. To preallocate, create a model array of the required
size and initialize its entries to zero.

H = tf(zeros(1,1,3,3));

In this example, there are three values for each parameter in the transfer function H.
Therefore, this command creates a 3-by-3 array of single-input, single-output (SISO) zero
transfer functions.

Create arrays containing the parameter values.

zeta = [0.66,0.71,0.75];

w = [1.0,1.2,1.5];

8 Sensitivity Analysis

8-6

Build the array by looping through all combinations of parameter values.

for i = 1:length(zeta)

 for j = 1:length(w)

 H(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);

 end

end

H is a 3-by-3 array of transfer functions. varies as you move from model to model along
a single column of H. The parameter varies as you move along a single row.

Plot the step response of H to see how the parameter variation affects the step response.

stepplot(H)

 Model Array with Variations in Two Parameters

8-7

You can set the SamplingGrid property of the model array to help keep track of which
set of parameter values corresponds to which entry in the array. To do so, create a grid of
parameter values that matches the dimensions of the array. Then, assign these values to
H.SamplingGrid with the parameter names.

[zetagrid,wgrid] = ndgrid(zeta,w);

H.SamplingGrid = struct('zeta',zetagrid,'w',wgrid);

When you display H, the parameter values in H.SamplingGrid are displayed along with
the each transfer function in the array.

8 Sensitivity Analysis

8-8

Study Parameter Variation by Sampling Tunable Model

This example shows how to sample a parametric model of a second-order filter across a
grid of parameter values using replaceBlock.

Consider the second-order filter represented by:

Sample this filter at varying values of the damping constant and the natural frequency
. Create a parametric model of the filter by using tunable elements for and .

wn = realp('wn',3);

zeta = realp('zeta',0.8);

F = tf(wn^2,[1 2*zeta*wn wn^2])

F =

 Generalized continuous-time state-space model with 1 outputs, 1 inputs, 2 states, and the following blocks:

 wn: Scalar parameter, 5 occurrences.

 zeta: Scalar parameter, 1 occurrences.

Type "ss(F)" to see the current value, "get(F)" to see all properties, and "F.Blocks" to interact with the blocks.

F is a genss model with two tunable Control Design Blocks, the realp blocks wn and
zeta. The blocks wn and zeta have initial values of 3 and 0.8, respectively.

Sample F over a 2-by-3 grid of (wn, zeta) values.

wnvals = [3;5];

zetavals = [0.6 0.8 1.0];

Fsample = replaceBlock(F,'wn',wnvals,'zeta',zetavals);

Fsample is a 2-by-3 array of state-space models. Each entry in the array is a state-space
model that represents F evaluated at the corresponding (wn, zeta) pair. For example,
Fsample(:,:,2,3) has wn = 5 and zeta = 1.0.

Examine the step response of Fsample.

 Study Parameter Variation by Sampling Tunable Model

8-9

stepplot(Fsample)

The step response plots show the variation in the natural frequency and damping
constant across the six models in the array Fsample.

You can set the SamplingGrid property of the model array to help keep track of which
set of parameter values corresponds to which entry in the array. To do so, create a grid of
parameter values that matches the dimensions of the array. Then, assign these values to
Fsample.SamplingGrid with the parameter names.

[wngrid,zetagrid] = ndgrid(wnvals,zetavals);

Fsample.SamplingGrid = struct('wn',wngrid,'zeta',zetagrid);

8 Sensitivity Analysis

8-10

When you display Fsample, the parameter values in Fsample.SamplingGrid are
displayed along with the each transfer function in the array.

More About
• “Models with Tunable Coefficients”

 Sensitivity of Control System to Time Delays

8-11

Sensitivity of Control System to Time Delays

This example shows how to examine the sensitivity of a closed-loop control system to
time delays within the system.

Time delays are rarely known accurately, so it is often important to understand how
sensitive a control system is to the delay value. Such sensitivity analysis is easily
performed using LTI arrays and the InternalDelay property. For example, consider
the notched PI control system developed in "PI Control Loop with Dead Time" from the
example "Analyzing Control Systems with Delays." The following commands create
an LTI model of that closed-loop system, a third-order plant with an input delay, a PI
controller and a notch filter.

s = tf('s');

G = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);

C = 0.06 * (1 + 1/s);

T = feedback(ss(G*C),1);

notch = tf([1 0.2 1],[1 .8 1]);

C = 0.05 * (1 + 1/s);

Tnotch = feedback(ss(G*C*notch),1);

Examine the internal delay of the closed-loop system Tnotch.

Tnotch.InternalDelay

ans =

 2.6000

The 2.6-second input delay of the plant G becomes an internal delay of 2.6 s in the closed-
loop system. To examine the sensitivity of the responses of Tnotch to variations in this
delay, create an array of copies of Tnotch. Then, vary the internal delay across the array.

Tsens = repsys(Tnotch,[1 1 5]);

tau = linspace(2,3,5);

for j = 1:5;

 Tsens(:,:,j).InternalDelay = tau(j);

end

The array Tsens contains five models with internal delays that range from 2.0 to 3.0.

Examine the step responses of these models.

8 Sensitivity Analysis

8-12

stepplot(Tsens)

The plot shows that uncertainty on the delay value has a small effect on closed-loop
characteristics.

Control Design

9

PID Controller Design

• “PID Controller Design at the Command Line” on page 9-2
• “Designing Cascade Control System with PI Controllers” on page 9-9

9 PID Controller Design

9-2

PID Controller Design at the Command Line

This example shows how to design a PID controller for the plant given by:

As a first pass, create a model of the plant and design a simple PI controller for it.

sys = zpk([],[-1 -1 -1],1);

[C_pi,info] = pidtune(sys,'pi')

C_pi =

 1

 Kp + Ki * ---

 s

 with Kp = 1.14, Ki = 0.454

Continuous-time PI controller in parallel form.

info =

 Stable: 1

 CrossoverFrequency: 0.5205

 PhaseMargin: 60.0000

C_pi is a pid controller object that represents a PI controller. The fields of info show
that the tuning algorithm chooses an open-loop crossover frequency of about 0.52 rad/s.

Examine the closed-loop step response (reference tracking) of the controlled system.

T_pi = feedback(C_pi*sys, 1);

step(T_pi)

 PID Controller Design at the Command Line

9-3

To improve the response time, you can set a higher target crossover frequency than the
result that pidtune automatically selects, 0.52. Increase the crossover frequency to 1.0.

[C_pi_fast,info] = pidtune(sys,'pi',1.0)

C_pi_fast =

 1

 Kp + Ki * ---

 s

 with Kp = 2.83, Ki = 0.0495

9 PID Controller Design

9-4

Continuous-time PI controller in parallel form.

info =

 Stable: 1

 CrossoverFrequency: 1

 PhaseMargin: 43.9973

The new controller achieves the higher crossover frequency, but at the cost of a reduced
phase margin.

Compare the closed-loop step response with the two controllers.

T_pi_fast = feedback(C_pi_fast*sys,1);

step(T_pi,T_pi_fast)

axis([0 30 0 1.4])

legend('PI','PI,fast')

 PID Controller Design at the Command Line

9-5

This reduction in performance results because the PI controller does not have enough
degrees of freedom to achieve a good phase margin at a crossover frequency of 1.0 rad/s.
Adding a derivative action improves the response.

Design a PIDF controller for Gc with the target crossover frequency of 1.0 rad/s.

[C_pidf_fast,info] = pidtune(sys,'pidf',1.0)

C_pidf_fast =

 1 s

 Kp + Ki * --- + Kd * --------

 s Tf*s+1

9 PID Controller Design

9-6

 with Kp = 2.72, Ki = 0.985, Kd = 1.72, Tf = 0.00875

Continuous-time PIDF controller in parallel form.

info =

 Stable: 1

 CrossoverFrequency: 1

 PhaseMargin: 60.0000

The fields of info show that the derivative action in the controller allows the tuning
algorithm to design a more aggressive controller that achieves the target crossover
frequency with a good phase margin.

Compare the closed-loop step response and disturbance rejection for the fast PI and PIDF
controllers.

T_pidf_fast = feedback(C_pidf_fast*sys,1);

step(T_pi_fast, T_pidf_fast);

axis([0 30 0 1.4]);

legend('PI,fast','PIDF,fast');

 PID Controller Design at the Command Line

9-7

You can compare the input (load) disturbance rejection of the controlled system with
the fast PI and PIDF controllers. To do so, plot the response of the closed-loop transfer
function from the plant input to the plant output.

S_pi_fast = feedback(sys,C_pi_fast);

S_pidf_fast = feedback(sys,C_pidf_fast);

step(S_pi_fast,S_pidf_fast);

axis([0 50 0 0.4]);

legend('PI,fast','PIDF,fast');

9 PID Controller Design

9-8

This plot shows that the PIDF controller also provides faster disturbance rejection.

 Designing Cascade Control System with PI Controllers

9-9

Designing Cascade Control System with PI Controllers
This example shows how to design a cascade control loop with two PI controllers using
the pidtune command.

Introduction to Cascade Control

Cascade control is mainly used to achieve fast rejection of disturbance before it
propagates to the other parts of the plant. The simplest cascade control system involves
two control loops (inner and outer) as shown in the block diagram below.

Controller C1 in the outer loop is the primary controller that regulates the primary
controlled variable y1 by setting the set-point of the inner loop. Controller C2 in the
inner loop is the secondary controller that rejects disturbance d2 locally before it
propagates to P1. For a cascade control system to function properly, the inner loop must
respond much faster than the outer loop.

In this example, you will design a single loop control system with a PI controller and a
cascade control system with two PI controllers. The responses of the two control systems
are compared for both reference tracking and disturbance rejection.

Plant

In this example, the inner loop plant P2 is

The outer loop plant P1 is

9 PID Controller Design

9-10

P2 = zpk([],-2,3);

P1 = zpk([],[-1 -1 -1],10);

Designing a Single Loop Control System with a PI Controller

Use pidtune command to design a PI controller in standard form for the whole plant
model P = P1 * P2.

The desired open loop bandwidth is 0.2 rad/s, which roughly corresponds to the response
time of 10 seconds.

% The plant model is P = P1*P2

P = P1*P2;

% Use a PID or PIDSTD object to define the desired controller structure

C = pidstd(1,1);

% Tune PI controller for target bandwidth is 0.2 rad/s

C = pidtune(P,C,0.2);

C

C =

 1 1

 Kp * (1 + ---- * ---)

 Ti s

 with Kp = 0.0119, Ti = 0.849

Continuous-time PI controller in standard form

Designing a Cascade Control System with Two PI Controllers

The best practice is to design the inner loop controller C2 first and then design the outer
loop controller C1 with the inner loop closed. In this example, the inner loop bandwidth

 Designing Cascade Control System with PI Controllers

9-11

is selected as 2 rad/s, which is ten times higher than the desired outer loop bandwidth.
In order to have an effective cascade control system, it is essential that the inner loop
responds much faster than the outer loop.

Tune inner-loop controller C2 with open-loop bandwidth at 2 rad/s.

C2 = pidtune(P2,pidstd(1,1),2);

C2

C2 =

 1 1

 Kp * (1 + ---- * ---)

 Ti s

 with Kp = 0.244, Ti = 0.134

Continuous-time PI controller in standard form

Tune outer-loop controller C1 with the same bandwidth as the single loop system.

% Inner loop system when the control loop is closed first

clsys = feedback(P2*C2,1);

% Plant seen by the outer loop controller C1 is clsys*P1

C1 = pidtune(clsys*P1,pidstd(1,1),0.2);

C1

C1 =

 1 1

 Kp * (1 + ---- * ---)

 Ti s

 with Kp = 0.015, Ti = 0.716

Continuous-time PI controller in standard form

Performance Comparison

First, plot the step reference tracking responses for both control systems.

% single loop system for reference tracking

9 PID Controller Design

9-12

sys1 = feedback(P*C,1);

sys1.Name = 'Single Loop';

% cascade system for reference tracking

sys2 = feedback(clsys*P1*C1,1);

sys2.Name = 'Cascade';

% plot step response

figure;

step(sys1,'r',sys2,'b')

legend('show','location','southeast')

title('Reference Tracking')

Secondly, plot the step disturbance rejection responses of d2 for both control systems.

% single loop system for rejecting d2

 Designing Cascade Control System with PI Controllers

9-13

sysd1 = feedback(P1,P2*C);

sysd1.Name = 'Single Loop';

% cascade system for rejecting d2

sysd2 = P1/(1+P2*C2+P2*P1*C1*C2);

sysd2.Name = 'Cascade';

% plot step response

figure;

step(sysd1,'r',sysd2,'b')

legend('show')

title('Disturbance Rejection')

From the two response plots you can conclude that the cascade control system performs
much better in rejecting disturbance d2 while the set-point tracking performances are
almost identical.

10

Single-Input, Single-Output Control
Design

10 Single-Input, Single-Output Control Design

10-2

Getting Started with the SISO Design Tool

This example shows how the SISO Design Tool facilitates the compensator design process
by providing interactive and automated tools to tune compensators for a feedback control
system.

Compensator Design Task and the SISO Design Tool

The SISO Design Tool allows:

1) The design problem to be setup graphically by defining the control design requirement
on time, frequency, and pole/zero response plots.

2) Tuning the compensator with:

• automated design methods such as Ziegler Nichols, IMC, and LQG.
• graphically tuning poles and zeros on design plots such as Bode and root locus.
• optimization to meet time and frequency-domain requirements using Simulink®

Design Optimization™.

3) While tuning the compensators, the closed-loop and open-loop responses are
dynamically updated to display the performance of the control system.

The design process using the SISO Design Tool will be illustrated with an example
problem.

Compensator Design Problem Example

For this example we will design a compensator for the system

with the following design requirements:

• Zero steady state error with respect to a step input.
• 80% rise time < 1 second.
• Settling time < 2 seconds.
• Maximum overshoot < 20%.
• Open-loop crossover constraint of less than 5 rad/s.

 Getting Started with the SISO Design Tool

10-3

Launching the SISO Design Tool and Configuring Design Objectives

For this example we will use the standard feedback structure with the controller in the
forward path which happens to be the default feedback structure when launching the
SISO Design Tool. To launch the SISO Design Tool with the specified plant G type

>> sisotool(tf(1,[1,1]))

This will bring up two windows. The first window is Control and Estimation Tools
Manager (CETM)

and the second window is the SISO Design graphical editors

10 Single-Input, Single-Output Control Design

10-4

In the CETM the SISO Design Task node contains tabbed panels which are used to
configure the compensator design options as well as manipulate the compensators. For
complete details of the functionality for each of the panels refer to the documentation.

For this design example we will use the root-locus plot and open-loop Bode plot for
graphically tuning the compensator and validate the design by viewing the step response.

To view the closed-loop step response, click on the Analysis Plot tab in the CETM. Now
configure the plot by selecting "Step" for the first plot and checking the first check box for
the response "Closed-Loop r to y". This will bring up the SISO Tool Viewer.

 Getting Started with the SISO Design Tool

10-5

10 Single-Input, Single-Output Control Design

10-6

Now add the time domain design requirements to the step response plot by right clicking
on the axis and selecting the Design Requirements -> New menu item. We will use
the "Step response bounds" design requirement type to specify the rise time, settling time
and overshoot requirements.

 Getting Started with the SISO Design Tool

10-7

We can now use this time response with its requirements to view the performance of the
compensator design.

10 Single-Input, Single-Output Control Design

10-8

To specify the frequency domain crossover requirement, right click the bode axis in the
SISO Design window and select the Design Requirement->New menu item and specify
an upper gain limit.

 Getting Started with the SISO Design Tool

10-9

Now that the problem has been set up we will begin to design the compensator to satisfy
the problem specifications.

Tuning Compensators

Compensators can be manually tuned from the graphical editors or the Compensator
Editor tab of the CETM. For this example we will use the graphical editors to tune the
compensator. To begin the design an integrator will be added to achieve zero steady state
error to a step input. To add the integrator to the compensator use the right-click menu
on the root-locus plot and select Add Pole/Zero->Integrator. To create a desirable
shape for the root locus plot we will add a zero at approximately -2. To add the zero,
use the right-click menu on the root-locus plot and select Add Pole/Zero->Real Zero
menu item and then left-click at approximately -2 on the real axis of the root locus plot.
Now in the bode plot adjust the open-loop gain by clicking and dragging the curve on the
magnitude plot such that the cross-over and time domain constraints are satisfied.

10 Single-Input, Single-Output Control Design

10-10

 Getting Started with the SISO Design Tool

10-11

To view the compensator go to Compensator Editor tab. Note that the steps performed
in the graphical tuning plots to tune the compensator can also be accomplished from this
panel.

10 Single-Input, Single-Output Control Design

10-12

Automated Tuning of Compensators

In addition to the manual tuning interfaces, the SISO Design Tool also provides the
following automated tuning algorithms:

• Use the PID tuning, IMC tuning, and LQG synthesis options in the Automated
Tuning panel to compute initial parameters for the compensators based on tuning
parameters such as closed-loop time constants. See the example "Automated
Controller Design in the SISO Design Tool".

• Use the Optimization based tuning option in the Automated Tuning panel
(requires Simulink Design Optimization) to tune the compensators using both time
and frequency domain design requirements. See the example "DC Motor Controller
Tuning".

 Getting Started with the SISO Design Tool

10-13

Summary

Using the SISO Design Tool we were able to successfully design a compensator such that
all of the specified design requirements were satisfied. The tool facilitated the heuristic
process of compensator design by providing an interactive and visual environment for

• Specifying the design requirements
• Tuning the compensator, and
• Evaluating the performance of the design.

Customization

11

Preliminaries

• “Terminology” on page 11-2
• “Property and Preferences Hierarchy” on page 11-3
• “Ways to Customize Plots” on page 11-5

11 Preliminaries

11-2

Terminology

You can use the Control System Toolbox editors to set properties and preferences in the
SISO Design Tool, the Linear System Analyzer, and in any response plots that you create
from the MATLAB prompt.

Properties refer to settings that are specific to an individual response plot. This includes
the following:

• Axes labels, and limits
• Data units and scales
• Plot styles, such as grids, fonts, and axes foreground colors
• Plot characteristics, such as rise time, peak response, and gain and phase margins

Preferences refers to properties that persist either

• Within a single session for a specific instance of a Linear System Analyzer or a SISO
Design Tool

• Across Control System Toolbox sessions

The former are called tool preferences, the latter toolbox preferences.

 Property and Preferences Hierarchy

11-3

Property and Preferences Hierarchy

You can use three graphical user interfaces (GUIs) to control over the visualization of
time and frequency plots generated by the toolbox:

• Toolbox Preferences
• Tool Preferences
• Plot Properties

Preferences refer to global options that you can save from session to session or to any
Linear System Analyzer or SISO Design Tool that you open during a single session.
Properties are options that apply only to the current window. This section gives an
overview of the three GUIs.

Although you can set plot properties in any response plot, you can use the Toolbox
Preferences Editor to set properties for any response plot that you generate. This figure
shows the inheritance hierarchy from toolbox preference to plot properties.

Preference and Property Inheritance Hierarchy

You can activate preference and plot editors by doing the following:

• Toolbox preferences — Select Toolbox Preferences under File in either the Linear
System Analyzer or the SISO Design Tool.

11 Preliminaries

11-4

• Tool preferences — Select SISO Tool Preferences under Edit for the SISO Design
Tool and Viewer Preferences under Edit in the Linear System Analyzer.

• Plot properties — Double-click any Control System Toolbox response plot or select
Properties from the right-click menus.

 Ways to Customize Plots

11-5

Ways to Customize Plots

You can customize your plots by changing plot properties. For example, you can change
the plot units. The following table describes ways that you can customize plots.

To change plot properties of For more information, see

A single plot, directly from the plot • “Customizing Response Plots Using
the Response Plots Property Editor”
on page 14-3 and “Customizing
Response Plots Using Plot Tools” on
page 14-18 for response plots

• “Linear System Analyzer Preferences
Editor” for Linear System Analyzer
plots

• “Graphical Tuning Window Preferences
Editor” for Graphical Tuning Window
plots

A single plot or many plots,
programmatically from the command line

“Customizing Response Plots from the
Command Line”

All Control System Toolbox plots (changes
apply globally to all plot types and persist
from session to session)

“Toolbox Preferences Editor”

12

Setting Toolbox Preferences

• “Toolbox Preferences Editor” on page 12-2
• “Units Pane” on page 12-4
• “Style Pane” on page 12-7
• “Options Pane” on page 12-8
• “SISO Tool Pane” on page 12-9

12 Setting Toolbox Preferences

12-2

Toolbox Preferences Editor

In this section...

“Overview of the Toolbox Preferences Editor” on page 12-2
“Opening the Toolbox Preferences Editor” on page 12-2

Overview of the Toolbox Preferences Editor

The Toolbox Preferences editor allows you to set plot preferences that will persist from
session to session.

Opening the Toolbox Preferences Editor

To open the Toolbox Preferences editor, select Toolbox Preferences from the File
menu of the Linear System Analyzer or the SISO Design Tool. Alternatively, you can
type

ctrlpref

at the MATLAB prompt.

Control System Toolbox Preferences Editor

 Toolbox Preferences Editor

12-3

• “Units Pane” on page 12-4
• “Style Pane” on page 12-7
• “Options Pane” on page 12-8
• “SISO Tool Pane” on page 12-9

12 Setting Toolbox Preferences

12-4

Units Pane

Use the Units pane to set preferences for the following:

• Frequency

The default auto option uses rad/TimeUnit as the frequency units relative to
the system time units, where TimeUnit is the system time units specified in the
TimeUnit property of the system on frequency-domain plots. For multiple systems
with different time units, the units of the first system is used.

For the frequency axis, you can select logarithmic or linear scales.

Other Frequency Units Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

 Units Pane

12-5

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)
• Phase — Degrees or radians
• Time

The default auto option uses the time units specified in the TimeUnit property of the
system on the time- and frequency-domain plots. For multiple systems with different
time units, the units of the first system is used.

Other Time Units Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

12 Setting Toolbox Preferences

12-6

• 'months'

• 'years'

 Style Pane

12-7

Style Pane

Use the Style pane to toggle grid visibility and set font preferences and axes foreground
colors for all plots you create. This figure shows the Style pane.

You have the following choices:

• Grid — Activate grids by default in new plots.
• Fonts — Set the font size, weight (bold), and angle (italic).
• Colors — Specify the color vector to use for the axes foreground, which includes the

X-Y axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select button to
open the Select Colors dialog box. See “Select colors” on page 13-13 for more
information.

12 Setting Toolbox Preferences

12-8

Options Pane

The Options pane has selections for time responses and frequency responses. This figure
shows the Options pane with default settings.

The following are the available options for the Options pane:

• Time Response:

• Show settling time within xx%— You can set the threshold of the settling time
calculation to any percentage from 0 to 100%. The default is 2%.

• Specify rise time from xx% to yy%— The standard definition of rise time is the
time it takes the signal to go from 10% to 90% of the final value. You can choose
any percentages you like (from 0% to 100%), provided that the first value is
smaller than the second.

• Frequency Response:

• Only show magnitude above xx—Specify a lower limit for magnitude values in
response plots so that you can focus on a region of interest.

• Unwrap phase—By default, the phase is unwrapped. Wrap the phrase by clearing
this box. If the phase is wrapped, all phase values are shifted such that their
equivalent value displays in the range [-180°, 180°).

 SISO Tool Pane

12-9

SISO Tool Pane

The SISO Tool pane has settings for the SISO Design Tool. This figure shows the SISO
Tool pane with default settings.

You can make the following selections:

• Compensator Format — Select the time constant, natural frequency, or zero/pole/
gain format. The time constant format is a factorization of the compensator transfer
function of the form

DC
Tz s

Tp s
¥

+()

+()

1

1

1

1

L

where DC is compensator DC gain, Tz1, Tz2, ..., are the zero time constants, and Tp1,
Tp2, ..., are the pole time constants.

The natural frequency format is

DC
s

s

z

p

¥
+()
+()

1

1

1

1

w

w
L

12 Setting Toolbox Preferences

12-10

where DC is compensator DC gain, ωz1, and ωz2, ... and ωp1, ωp2, ..., are the natural
frequencies of the zeros and poles, respectively.

The zero/pole/gain format is

K
s z

s p
¥

+()

+()
1

1

where K is the overall compensator gain, and z1, z2, ... and p1, p2, ..., are the zero and
pole locations, respectively.

• Bode Options — By default, the SISO Design Tool shows the plant and sensor poles
and zeros as blue x's and o's, respectively. Clear this box to eliminate the plant's poles
and zeros from the Bode plot. Note that the compensator poles and zeros (in red) will
still appear.

13

Setting Tool Preferences

• “Linear System Analyzer Preferences Editor” on page 13-2
• “Graphical Tuning Window Preferences Editor” on page 13-9

13 Setting Tool Preferences

13-2

Linear System Analyzer Preferences Editor

In this section...

“Opening the Linear System Analyzer Preference Editor” on page 13-2
“Units Pane” on page 13-3
“Style Pane” on page 13-5
“Options Pane” on page 13-6
“Parameters Pane” on page 13-7

Opening the Linear System Analyzer Preference Editor

In the Linear System Analyzer, select Edit > Linear System Analyzer Preferences.
The Linear System Analyzer Preferences dialog box let you customize various Linear
System Analyzer properties, including units, fonts, and various other characteristics.
This figure shows the editor open to its first pane.

• “Units Pane” on page 13-3
• “Style Pane” on page 13-5
• “Options Pane” on page 13-6
• “Parameters Pane” on page 13-7

 Linear System Analyzer Preferences Editor

13-3

Units Pane

You can select the following on the Units pane:

• Frequency

The default auto option uses rad/TimeUnit as the frequency units relative to
the system time units, where TimeUnit is the system time units specified in the
TimeUnit property of the system on frequency-domain plots. For multiple systems
with different time units, the units of the first system is used.

For the frequency axis, you can select logarithmic or linear scales.

Other Frequency Units Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

13 Setting Tool Preferences

13-4

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)
• Phase — Degrees or radians
• Time

The default auto option uses the time units specified in the TimeUnit property of the
system on the time- and frequency-domain plots. For multiple systems with different
time units, the units of the first system is used.

Other Time Units Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

 Linear System Analyzer Preferences Editor

13-5

• 'days'

• 'weeks'

• 'months'

• 'years'

Style Pane

Use the Style pane to toggle grid visibility and set font preferences and axes foreground
colors for all plots in the Linear System Analyzer. This figure shows the Style pane.

You have the following choices:

• Grid — Activate grids for all plots in the Linear System Analyzer
• Fonts — Set the font size, weight (bold), and angle (italic)
• Colors — Specify the color vector to use for the axes foreground, which includes the

X-Y axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

• If you do not want to specify the RGB values numerically, press the Select button
to open the Select Colors window. See “Select colors” on page 13-13 for more
information.

13 Setting Tool Preferences

13-6

Options Pane

The Options pane has selections for time responses and frequency responses.

The following choices are available:

• Time Response:

• Show settling time within xx%— You can set the threshold of the settling time
calculation to any percentage from 0 to 100%. The default is 2%.

• Specify rise time from xx% to yy%— The standard definition of rise time is the
time it takes the signal to go from 10% to 90% of the final value. You can choose
any percentages you like (from 0% to 100%), provided that the first value is
smaller than the second.

• Frequency Response:

• Only show magnitude above xx—Specify a lower limit for magnitude values in
response plots so that you can focus on a region of interest.

• Unwrap phase—By default, the phase is unwrapped. Wrap the phrase by clearing
this box. If the phase is wrapped, all phase values are shifted such that their
equivalent value displays in the range [-180°, 180°).

 Linear System Analyzer Preferences Editor

13-7

Parameters Pane

Use the Parameters pane, shown below, to specify input vectors for time and frequency
simulation.

The defaults are to generate time and frequency vectors for your plots automatically. You
can, however, override the defaults as follows:

• Time Vector:

• Define stop time — Specify the final time value for your simulation
• Define vector — Specify the time vector manually using equal-sized time steps

• Frequency Vector:

• Define range — Specify the bandwidth of your response. Whether it's in rad/sec or
Hz depends on the selection you made in the Units pane.

• Define vector — Specify the vector for your frequency values. Any real, positive,
strictly monotonically increasing vector is valid.

See Also
linearSystemAnalyzer

13 Setting Tool Preferences

13-8

More About
• “Linear System Analyzer Overview”

 Graphical Tuning Window Preferences Editor

13-9

Graphical Tuning Window Preferences Editor

In this section...

“Opening the Graphical Tuning Window Preferences Editor” on page 13-9
“Units Pane” on page 13-10
“Time Delays Pane” on page 13-11
“Style Pane” on page 13-12
“Options Pane” on page 13-14
“Line Colors Pane” on page 13-16

Opening the Graphical Tuning Window Preferences Editor

To open the SISO Tool Preferences editor, select SISO Tool Preferences from the
Edit menu of the Graphical Tuning window. This window opens.

13 Setting Tool Preferences

13-10

Units Pane

The Units pane has settings for the following units:

• Frequency

The default units are rad/second.

Other Frequency Units Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

 Graphical Tuning Window Preferences Editor

13-11

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)
• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Time Delays Pane

In the Time Delays pane, specify the order for Padé approximations of delays in your
system as either:

• Actual Padé order

13 Setting Tool Preferences

13-12

• Bandwidth of accuracy (rad/s) — The highest frequency at which the approximated
response matches the actual system. The software computes and displays the
corresponding Padé order.

The following compensator design tools do not support systems with exact time delays. If
your system has exact continuous-time delays, these tools automatically compute a Padé
approximation of the delays. In this case, you receive a notification.

• Root locus
• Pole-zero
• PID automated tuning
• IMC automated tuning
• LQG automated tuning
• Loop shaping automated tuning

Tip To determine if a certain Padé order gives a good approximation of your system, use
the pade command to approximate your system. Then, compare a plot of the two systems
using the bode command.

Style Pane

Use the Style pane to toggle grid visibility and set font preferences and axes foreground
colors for all plots in the Graphical Tuning Window. This figure shows the Style pane.

 Graphical Tuning Window Preferences Editor

13-13

Grids Panel

Select the box to activate grids for all plots in the GRAPHICAL Tuning Window

Fonts Panel

Set the font size, weight (bold), and angle (italic) by using the menus and check boxes.

Colors Panel

Specify the color vector to use for the axes foreground, which includes the X-Y axes, grid
lines, and tick labels. Use a three-element vector to represent red, green, and blue (RGB)
values. Vector element values can range from 0 to 1.

Select colors

Click the Select button to open the Select Color window for the axes foreground.

You can use this window to choose axes foreground colors without having to set RGB
(red-green-blue) values numerically. To make your selections, click on the colored
rectangles and press OK. If you want a broader range of colors, click the More Colors
button. This opens the More Colors window, as shown in the following figure.

13 Setting Tool Preferences

13-14

Click on the array of color swatches to select a color. Alternatively, click the HSB tab to
use the Hue Saturation Brightness (HSB) color picker. Or, click the RGB tab to enter
numeric RGB values.

When you select a color, the Preview section of the window changes to preview your
selection. Click OK to accept the choice. Click Reset to reset the selection.

Options Pane

The Options pane, shown below, has selections for compensator format and Bode
diagrams.

 Graphical Tuning Window Preferences Editor

13-15

You can make the following selections:

• Compensator Format — Select the time constant, natural frequency, or zero/pole/
gain format. The time constant format is a factorization of the compensator transfer
function of the form

DC
Tz s

Tp s
¥

+()

+()

1

1

1

1

L

where DC is compensator DC gain, Tz1, Tz2, ..., are the zero time constants, and Tp1,
Tp2, ..., are the pole time constants.

The natural frequency format is

DC
s

s

z

p

¥
+()
+()

1

1

1

1

w

w
L

where DC is compensator DC gain, ωz1, and ωz2, ... and ωp1, ωp2, ..., are the natural
frequencies of the zeros and poles, respectively.

The zero/pole/gain format is

13 Setting Tool Preferences

13-16

K
s z

s p
¥

+()

+()
1

1

where K is the overall compensator gain, and z1, z2, ... and p1, p2, ..., are the zero and
pole locations, respectively.

• Bode Options — By default, the GRAPHICAL Tuning Window shows the plant
and sensor poles and zeros as blue x's and o's, respectively. Clear this check box to
eliminate the plant's poles and zeros from the Bode plot. Note that the compensator
poles and zeros (in red) will still appear.

Line Colors Pane

The Line Colors pane, shown below, has selections for specify the colors of the lines in the
response plots of the Graphical Tuning Window.

To change the colors of plot lines associated with parts of your model, specify a three-
element vector to represent red, green, and blue (RGB) values. Vector element values can
range from 0 to 1.

If you do not want to specify the RGB values numerically, click the Select button to open
the Select Color window. See “Select colors” on page 13-13 for more information.

See Also
controlSystemDesigner

14

Customizing Response Plot Properties

• “Introduction” on page 14-2
• “Customizing Response Plots Using the Response Plots Property Editor” on page

14-3
• “Customizing Response Plots Using Plot Tools” on page 14-18
• “Customizing Response Plots from the Command Line” on page 14-22
• “Customizing Plots Inside the SISO Design Tool” on page 14-44
• “Build GUI With Interactive Plot Updates” on page 14-54

14 Customizing Response Plot Properties

14-2

Introduction

The lowest level of the “Property and Preferences Hierarchy” is setting response plot
properties. This means that any property you set for a given plot will only affect that
plot.

 Customizing Response Plots Using the Response Plots Property Editor

14-3

Customizing Response Plots Using the Response Plots Property
Editor

In this section...

“Opening the Property Editor” on page 14-3
“Overview of Response Plots Property Editor” on page 14-4
“Labels Pane” on page 14-6
“Limits Pane” on page 14-6
“Units Pane” on page 14-7
“Style Pane” on page 14-14
“Options Pane” on page 14-15
“Editing Subplots Using the Property Editor” on page 14-17

Opening the Property Editor

After you create a response plot, there are two ways to open the Property Editor:

• Double-click in the plot region
• Select Properties from the right-click menu

Before looking at the Property Editor, open a step response plot using these commands.

load ltiexamples

step(sys_dc)

This creates a step plot. Select Properties from the right-click menu. Note that when
you open the Property Editor, a set of black squares appear around the step response,
as this figure shows:

14 Customizing Response Plot Properties

14-4

SISO System Step Response

Overview of Response Plots Property Editor

This figure shows the Property Editor dialog box for a step response.

 Customizing Response Plots Using the Response Plots Property Editor

14-5

The Property Editor for Step Response

In general, you can change the following properties of response plots. Note that only the
Labels and Limits panes are available when using the Property Editor with Simulink
Design Optimization™ software.

• Titles and X- and Y-labels in the Labels pane.
• Numerical ranges of the X and Y axes in the Limits pane.
• Units where applicable (e.g., rad/s to Hertz) in the Units pane.

If you cannot customize units, as is the case with step responses, the Property Editor
will display that no units are available for the selected plot.

• Styles in the Styles pane.

You can show a grid, adjust font properties, such as font size, bold and italics, and
change the axes foreground color

• Change options where applicable in the Options pane.

These include peak response, settling time, phase and gain margins, etc. Plot options
change with each plot response type. The Property Editor displays only the options
that make sense for the selected response plot. For example, phase and gain margins
are not available for step responses.

As you make changes in the Property Editor, they display immediately in the response
plot. Conversely, if you make changes in a plot using right-click menus, the Property

14 Customizing Response Plot Properties

14-6

Editor for that plot automatically updates. The Property Editor and its associated plot
are dynamically linked.

Labels Pane

To specify new text for plot titles and axis labels, type the new string in the field next to
the label you want to change. Note that the label changes immediately as you type, so
you can see how the new text looks as you are typing.

Limits Pane

Default values for the axes limits make sure that the maximum and minimum x and y
values are displayed. If you want to override the default settings, change the values in
the Limits fields. The Auto-Scale box automatically clears if you click a different field.
The new limits appear immediately in the response plot.

To reestablish the default values, select the Auto-Scale box again.

 Customizing Response Plots Using the Response Plots Property Editor

14-7

Units Pane

You can use the Units pane to change units in your response plot. The contents of this
pane depend on the response plot associated with the editor.

The following table lists the options available for the response objects. Use the menus to
toggle between units.

Optional Unit Conversions for Response Plots

14 Customizing Response Plot Properties

14-8

Response Plot Unit Conversions

Bode and
Bode Magnitude

• Frequency

By default, shows rad/TimeUnit where TimeUnit
is the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

 Customizing Response Plots Using the Response Plots Property Editor

14-9

Response Plot Unit Conversions

• Frequency scale is logarithmic or linear.
• Magnitude in decibels (dB) or the absolute value
• Phase in degrees or radians

Impulse • Time.

By default, shows the system time units specified in
the TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Nichols Chart • Frequency

By default, shows rad/TimeUnit where TimeUnit
is the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

14 Customizing Response Plot Properties

14-10

Response Plot Unit Conversions

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

• Phase in degrees or radians

Nyquist Diagram • Frequency

By default, shows rad/TimeUnit where TimeUnit
is the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

 Customizing Response Plots Using the Response Plots Property Editor

14-11

Response Plot Unit Conversions

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Pole/Zero Map • Time.

By default, shows the system time units specified in
the TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

14 Customizing Response Plot Properties

14-12

Response Plot Unit Conversions

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

• Frequency

By default, shows rad/TimeUnit where TimeUnit
is the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

 Customizing Response Plots Using the Response Plots Property Editor

14-13

Response Plot Unit Conversions

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Singular Values • Frequency

By default, shows rad/TimeUnit where TimeUnit
is the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

14 Customizing Response Plot Properties

14-14

Response Plot Unit Conversions

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

• Frequency scale is logarithmic or linear.
• Magnitude in decibels or the absolute value using

logarithmic or linear scale

Step • Time.

By default, shows the system time units specified in
the TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Style Pane

Use the Style pane to toggle grid visibility and set font preferences and axes foreground
colors for response plots.

 Customizing Response Plots Using the Response Plots Property Editor

14-15

You have the following choices:

• Grid — Activate grids by default in new plots.
• Fonts — Set the font size, weight (bold), and angle (italic) for fonts used in response

plot titles, X/Y-labels, tick labels, and I/O-names.
• Colors — Specify the color vector to use for the axes foreground, which includes the

X-Y axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select button to open
the Select Color dialog box. See “Select colors” on page 13-13 for more information.

Options Pane

The Options pane allows you to customize response characteristics for plots. Each
response plot has its own set of characteristics and optional settings; the table below lists
them. Use the check boxes to activate the feature and the fields to specify rise or settling
time percentages. When you change the value in a field, press the Enter key on your
keyboard to update the response plot.

14 Customizing Response Plot Properties

14-16

Response Characteristic Options for Response Plots

Plot Customizable Feature

Bode Diagram and Bode
Magnitude

Select lower magnitude limit
Adjust phase offsets to keep phase close to a particular
value, within a range of ±180º, at a given frequency.
Unwrap phase (default is unwrapped)

Impulse Show settling time within xx% (specify the percentage)
Nichols Chart Select lower magnitude limit

Adjust phase offsets to keep phase close to a particular
value, within a range of ±180º, at a given frequency.
Unwrap phase (default is unwrapped)

Nyquist Diagram None
Pole/Zero Map None
Sigma None
Step Show settling time within xx% (specify the percentage)

Show rise time from xx to yy% (specify the percentages)

 Customizing Response Plots Using the Response Plots Property Editor

14-17

Editing Subplots Using the Property Editor

If you create more than one plot in a single figure window, you can edit each plot
individually. For example, the following code creates a figure with two plots, a step and
an impulse response with two randomly selected systems:

subplot(2,1,1)

step(rss(2,1))

subplot(2,1,2)

impulse(rss(1,1))

After the figure window appears, double-click in the upper (step response) plot to activate
the Property Editor. You will see a set of small black squares appear around the
step response, indicating that it is the active plot for the editor. To switch to the lower
(impulse response) plot, just click once in the impulse response plot region. The set of
black squares switches to the impulse response, and the Property Editor updates as
well.

14 Customizing Response Plot Properties

14-18

Customizing Response Plots Using Plot Tools

In this section...

“Properties You Can Customize Using Plot Tools” on page 14-18
“Opening and Working with Plot Tools” on page 14-19
“Example of Changing Line Color Using Plot Tools” on page 14-19

Properties You Can Customize Using Plot Tools

The following table shows the plot properties you can customize using plot tools.

For... You can customize the following properties:

Responses • System name
• Line color
• Line style
• Line width
• Marker type

For SISO systems, theses changes apply to a single plot line or an
array of plot lines representing the system on one axis. For MIMO
systems, these changes apply to all of the plotted lines representing
the system on multiple axis.

Plot axes • Title
• X-label
• Y-label

Figures • Figure name
• Colormap
• Figure color

Note: To make other changes to response plots, see “Customizing Response Plots Using
the Response Plots Property Editor” on page 14-3 and “Customizing Response Plots from
the Command Line” on page 14-22.

 Customizing Response Plots Using Plot Tools

14-19

Opening and Working with Plot Tools

See the following documentation for information about how to open and work with Plot
Tools and the Plot Tools Property Editor:

• “Customize Graph Using Plot Tools” in the MATLAB documentation.
• “Customize Objects in Graph” in the MATLAB documentation.

Example of Changing Line Color Using Plot Tools

To change the line color of a MIMO system plot:

1 Create a step response plot of a MIMO system by typing

sys_mimo=rss(3,3,3);

stepplot(sys_mimo)

2 In the figure window, select View > Property Editor.

This action opens the Plot Tools Property Editor.
3 Click the plot line in any of the nine axis.

This action selects the response for the sys_mimo system and updates the Plot Tools
Property Editor to show the available editable properties for the response.

14 Customizing Response Plot Properties

14-20

Note: The Plot Tools Property Editor applies changes to the response of the MIMO
system. Any change you make applies to all of the plotted lines in the figure.

Tip You can also change the properties of the response using the right-click menu
while in plot edit mode.

4 In the Property Editor – Waveform pane, select the color red.

 Customizing Response Plots Using Plot Tools

14-21

This action changes the color of the response that represents the MIMO system to
red.

14 Customizing Response Plot Properties

14-22

Customizing Response Plots from the Command Line

In this section...

“Overview of Customizing Plots from the Command Line” on page 14-22
“Obtaining Plot Handles” on page 14-25
“Obtaining Plot Options Handles” on page 14-26
“Examples of Customizing Plots from the Command Line” on page 14-28
“Properties and Values Reference” on page 14-32
“Property Organization Reference” on page 14-43

Overview of Customizing Plots from the Command Line

• “When to Customize Plots from the Command Line” on page 14-22
• “How to Customize Plots from the Command Line” on page 14-22
• “Change Bode Plot Units from the Command Line” on page 14-23

When to Customize Plots from the Command Line

You can customize any response plot from the command line. The command line is the
most efficient way to customize a large number of plots. For example, if you have a batch
job that produces many plots, you can change the x-axis units automatically for all the
plot with just a few lines of code.

How to Customize Plots from the Command Line

You can use the Control System Toolbox application program interface (API) to customize
plotting options for response plots from the command line.

Note This section assumes some very basic familiarity with Handle Graphics® and object-
oriented concepts, namely, classes, objects, and Handle Graphics handles. See “Classes in
the MATLAB Language” and “Graphics Objects” in the MATLAB online documentation
for more information.

To customize plots from the command line:

 Customizing Response Plots from the Command Line

14-23

1 Obtain the plot handle, which is an identifier for the plot, using the API's plotting
syntax.

For example,

h=stepplot(sys)

returns the plot handle h for the step plot.

For more information on obtaining plot handles, see “Obtaining Plot Handles” on
page 14-25.

2 Obtain the plot options handle, which is an identifier for all settable plot options. To
get a plot options handle for a given plot, type

p=getoptions(h);

p is the plot options handle for plot handle h.

For more information on obtaining plot options handles, see “Obtaining Plot Options
Handles” on page 14-26.

3 Use setoptions, along with the plot handle and the plot options handle, to access
and modify many plot options.

Note: You can also use setoptions to customize plots using property/value pairs
instead of the plot options handle. Using property/value pairs shortens the procedure to
one line of code.

Change Bode Plot Units from the Command Line

This example shows how to change the units of a Bode plot from rad/s to Hz.

Create a system and generate a Bode Plot of the system's response. The plot uses the
default units, rad/s.

sys = tf(4,[1 0.5 4]);

h = bodeplot(sys);

14 Customizing Response Plot Properties

14-24

The bodeplot command returns a plot handle that you can use to change properties of
the plot.

Change the units to Hz.

p = getoptions(h);

p.FreqUnits = 'Hz';

setoptions(h,p)

 Customizing Response Plots from the Command Line

14-25

The x-axis label updates to reflect the change of unit.

For more examples of customizing plots from the command line, see “Examples of
Customizing Plots from the Command Line”.

Obtaining Plot Handles

To programmatically interact with response plot, you need the plot handle. This handle
is an identifier to the response plot object. Because the Control System Toolbox plotting
commands, bode, rlocus, etc., all use the plot handle internally, this API provides a set
of commands that explicitly return the handle to your response plot. These functions all
end with "plot," which makes them easy to identify. This table lists the functions.

14 Customizing Response Plot Properties

14-26

Functions That Return the Plot Handle

Function Plot

bodeplot Bode magnitude and phase
hsvplot Hankel singular values
impulseplot Impulse response
initialplot Initial condition
iopzplot Pole/zero maps for input/output pairs
lsimplot Time response to arbitrary inputs
nicholsplot Nichols chart
nyquistplot Nyquist
pzplot Pole/zero
rlocusplot Root locus
sigmaplot Singular values of the frequency response
stepplot Step response

To get a plot handle for any response plot, use the functions from the table. For example,

h = bodeplot(sys)

returns plot handle h (it also renders the Bode plot). Once you have this handle, you can
modify the plot properties using the setoptions and getoptions methods of the plot
object, in this case, a Bode plot handle.

Obtaining Plot Options Handles

• “Overview of Plot Options Handles” on page 14-26
• “Retrieving a Handle” on page 14-27
• “Creating a Handle” on page 14-27
• “Which Properties Can You Modify?” on page 14-28

Overview of Plot Options Handles

Once you have the plot handle, you need the plot options handle, which is an identifier
for all the settable plot properties for a given response plot. There are two ways to create
a plot options handle:

 Customizing Response Plots from the Command Line

14-27

• Retrieving a Handle — Use getoptions to get the handle.
• Creating a Handle — Use <responseplot>options to instantiate a handle. See

Functions for Creating Plot Options Handles for a complete list.

Retrieving a Handle

The getoptions function retrieves a plot options handle from a plot handle.

p=getoptions(h) % Returns plot options handle p for plot handle h.

If you specify a property name as an input argument, getoptions returns the property
value associated with the property name.

property_value=getoptions(h,PropertyName) % Returns a property

 % value.

Creating a Handle

You can create a default plot options handle by using functions in the form of

<responseplot>options

For example,

p=bodeoptions;

instantiates a handle for Bode plots. See “Properties and Values Reference” on page
14-32 for a list of default values.

If you want to set the default values to the Control System Toolbox default values, pass
cstprefs to the function. For example,

p = bodeoptions('cstprefs');

set the Bode plot property/value pairs to the Control System Toolbox default values.

This table lists the functions that create a plot options handle.

Functions for Creating Plot Options Handles

Function Type of Plot Options Handle Created

bodeoptions Bode phase and magnitude

14 Customizing Response Plot Properties

14-28

Function Type of Plot Options Handle Created

hsvoptions Hankel singular values
nicholsoptions Nichols plot
nyquistoptions Nyquist plot
pzoptions Pole/zero plot
sigmaoptions Sigma (singular values) plot
timeoptions Time response (impulse, step, etc.)

Which Properties Can You Modify?

Use

help <responseplot>options

to see a list of available property value pairs that you can modify. For example,
help bodeoptions

You can modify any of these parameters using setoptions. The next topic provides
examples of modifying various response plots.

See “Properties and Values Reference” on page 14-32 for a complete list of property/
value pairs for response plots.

Examples of Customizing Plots from the Command Line

• “Manipulating Plot Options Handles” on page 14-28
• “Changing Plot Units” on page 14-29
• “Create Plots Using Existing Plot Options Handle” on page 14-30
• “Creating a Default Plot Options Handle” on page 14-30
• “Using Dot Notation Like a Structure” on page 14-31
• “Setting Property Pairs in setoptions” on page 14-31

Manipulating Plot Options Handles

There are two fundamental ways to manipulate plot option handles:

 Customizing Response Plots from the Command Line

14-29

• Dot notation — Treat the handle like a MATLAB structure.
• Property value pairs — Specify property/value pairs explicitly as input arguments to

setoptions.

For some examples, both dot notation and property/value pairs approaches are shown.
For all examples, use

sys=tf(1,[1 1])

for the system.

Changing Plot Units

Change the frequency units of a Bode plot from rad/s to Hz.

h = bodeplot(sys);

p = getoptions(h);

p.FreqUnits = 'Hz'

setoptions(h,p)

or, for the last three lines, substitute

setoptions(h,'FreqUnits','Hz')

14 Customizing Response Plot Properties

14-30

Create Plots Using Existing Plot Options Handle

You can use an existing plot options handle to customize a second plot:

h1 = bodeplot(sys);

p1 = getoptions(h1);

h2 = bodeplot(sys,p1);

or

h1 = bodeplot(sys);

h2 = bodeplot(sys2);

setoptions(h2,getoptions(h1))

Creating a Default Plot Options Handle

Instantiate a plot options handle with this code.

p = bodeoptions;

 Customizing Response Plots from the Command Line

14-31

Change the frequency units and apply the changes to sys.

p.FreqUnits ='Hz';

h = bodeplot(sys,p);

Using Dot Notation Like a Structure

You can always use dot notation to assign values to properties.

h1 = bodeplot(sys)

p1 = getoptions(h1)

p1.FreqUnits = Hz'

p1.Title.String = 'My Title';

setoptions(h1,p1)

Setting Property Pairs in setoptions

Instead of using dot notation, specify frequency units as property/value pairs in
setoptions.

h1 = bodeplot(sys)

setoptions(h1,'FreqUnits','Hz')

14 Customizing Response Plot Properties

14-32

Verify that the units have changed from rad/s to Hz.

getoptions(h1,'FreqUnits') % Returns frequency units for h1.

ans =

Hz

Properties and Values Reference

• “Property/Value Pairs Common to All Response Plots” on page 14-32
• “Bode Plots” on page 14-35
• “Hankel Singular Values” on page 14-37
• “Nichols Plots” on page 14-37
• “Nyquist Charts” on page 14-38
• “Pole/Zero Maps” on page 14-39
• “Sigma Plots” on page 14-41
• “Time Response Plots” on page 14-42

Property/Value Pairs Common to All Response Plots

The following tables discuss property/value pairs common to all response plots.

Title

Property Default Value Description

Title.String none String

Title.FontSize 8 Double

Title.FontWeight normal [light | normal | demi]

Title.FontAngle normal [normal | italic | oblique]

Title.Color [0 0 0] 1-by-3 RGB vector

X Label

Property Default Value Description

XLabel.String none String

Xlabel.FontSize 8 Double

Xlabel.FontWeight normal [light | normal | demi]

 Customizing Response Plots from the Command Line

14-33

Property Default Value Description

XLabel.FontAngle normal [normal | italic | oblique]

Xlabel.Color [0 0 0] 1-by-3 RGB vector

Y Label

Property Default Value Description

YLabel.String none String

Ylabel.FontSize 8 Double

Ylabel.FontWeight normal [light | normal | demi]

YLabel.FontAngle normal [normal | italic | oblique]

Ylabel.Color [0 0 0] 1-by-3 RGB vector

Tick Label

Property Default Value Description

TickLabel.FontSize 8 Double

TickLabel.FontWeight normal [light | normal | demi]

TickLabel.FontAngle normal [normal | italic | oblique]

Ticklabel.Color [0 0 0] 1-by-3 RGB vector

Grid and Axis Limits

Property Default Value Description

grid off [on | off]

Xlim {[]} A cell array of 1-by-2 doubles that specifies the x-axis
limits when XLimMode is set to manual. When XLim is
scalar, scalar expansion is applied; otherwise the length
of the cell array must equal the number of columns (i.e.,
number of system inputs) for the plot. The 1-by-2 doubles
must be a strictly increasing pair [xmin, xmax].

XLimMode {auto} A cell array of strings [auto | manual] that specifies
the x-axis limits mode. When XLimMode is set to manual
the limits are set to the values specified in XLim. When
XLimMode is scalar, scalar expansion is applied; otherwise

14 Customizing Response Plot Properties

14-34

Property Default Value Description

the length of the cell array must equal the number of
columns (i.e., number of system inputs) for the plot.

YLim {[]} A cell array of 1-by-2 doubles specifies the y-axis limits
when YLimMode is set to manual. When YLim is scalar,
scalar expansion is applied; otherwise the length of the
cell array must equal the number of rows (i.e., number of
system outputs) for the plot. The 1-by-2 doubles must be a
strictly increasing pair [ymin, ymax].

YLimMode {auto} A cell array of strings [auto | manual] that specifies
the y-axis limits mode. When YLimMode is set to manual
the limits are set to the values specified in YLim. When
YLimMode is scalar, scalar expansion is applied; otherwise
the length of the cell array must equal the number of rows
(i.e., number of system outputs) for the plot.

I/O Grouping

Property Default Value Description

IOGrouping none [none | inputs | outputs | all]

Specifies input/output groupings for
responses.

Input Labels

Property Default Value Description

InputLabels.FontSize 8 Double

InputLabels.FontWeight normal [light | normal | demi]

InputLabels.FontAngle normal [normal | italic |

oblique]

InputLabels.Color [0 0 0] 1-by-3 RGB vector

Output Labels

Property Default Value Description

OutputLabel.FontSize 8 Double

OutputLabels.FontWeight normal [light | normal | demi]

 Customizing Response Plots from the Command Line

14-35

Property Default Value Description

OutputLabels.FontAngle normal [normal | italic |

oblique]

OutputLabels.Color [0 0 0] 1-by-3 RGB vector

Input/Output Visible

Property Default Value Description

InputVisible {on} [on | off]

A cell array that specifies the visibility
of each input channel. If the value is a
scalar, scalar expansion is applied.

OutputVisible {on} [on | off]

A cell array that specifies the visibility
of each output channel. If the value is a
scalar, scalar expansion is applied.

Bode Plots

Property Default Value Description

FreqUnits rad/s Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

14 Customizing Response Plot Properties

14-36

Property Default Value Description

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

FreqScale log [linear | log]

MagUnits dB [db | abs]

MagScale linear [linear | log]

PhaseUnits deg [rad | deg]

PhaseWrapping off [on | off]

MagVisible on [on | off]

PhaseVisible on [on | off]

MagLowerLimMode auto [auto | manual]

Enables a manual lower magnitude limit
specification by MagLowerLim.

MagLowerLim 0 Double

Specifies the lower magnitude limit when
MagLowerLimMode is set to manual.

PhaseMatching off [on | off]

Enables adjusting phase effects for phase
response.

PhaseMatchingFreq 0 Double

 Customizing Response Plots from the Command Line

14-37

Property Default Value Description

PhaseMatchingValue 0 Double

Hankel Singular Values

Property Default Value Description

Yscale linear [linear | log]

AbsTol 0 Double

See hsvd and stabsep for details.
RelTol 1*e-08 Double

See hsvd and stabsep for details.
Offset 1*e-08 Double

See hsvd and stabsep for details.

Nichols Plots

Property Default Value Description

FreqUnits rad/s Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

14 Customizing Response Plot Properties

14-38

Property Default Value Description

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

MagUnits dB [dB | abs]

PhaseUnits deg [rad | deg]

MagLowerLimMode auto [auto | manual]

MagLowerLim 0 double
PhaseMatching off [on | off]
PhaseMatchingFreq 0 Double
PhaseMatchingValue 0 Double

Nyquist Charts

Property Default Value Description

FreqUnits rad/s Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

 Customizing Response Plots from the Command Line

14-39

Property Default Value Description

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

MagUnits dB [dB | abs]

PhaseUnits deg [rad | deg]

ShowFullContour on [on | off]

Pole/Zero Maps

Property Default Value Description

FreqUnits rad/s Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

14 Customizing Response Plot Properties

14-40

Property Default Value Description

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

TimeUnits seconds Available Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

 Customizing Response Plots from the Command Line

14-41

Sigma Plots

Property Default Value Description

FreqUnits rad/s Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

FreqScale log [linear | log]

MagUnits dB [dB | abs]

MagScale linear [linear | log]

14 Customizing Response Plot Properties

14-42

Time Response Plots

Property Default Value Description

Normalize off [on | off]

Normalize the y-scale of all responses in
the plot.

SettleTimeThreshold 0.02 Double

Specifies the settling time threshold.
0.02 = 2%.

RiseTimeLimits [0.1, 0.9] 1-by-2 double

Specifies the limits used to define the
rise time. [0.1, 0.9] is 10% to 90%.

TimeUnits seconds Available Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

 Customizing Response Plots from the Command Line

14-43

Property Organization Reference

14 Customizing Response Plot Properties

14-44

Customizing Plots Inside the SISO Design Tool

In this section...

“Overview of Customizing SISO Design Tool Plots” on page 14-44
“Root Locus Property Editor” on page 14-44
“Open-Loop Bode Property Editor” on page 14-48
“Open-Loop Nichols Property Editor” on page 14-51
“Prefilter Bode Property Editor” on page 14-52

Overview of Customizing SISO Design Tool Plots

Customizing plots inside the SISO Design Tool is similar to how you customize any
response plot. The following property editors are specific to the SISO Design Tool:

• Root Locus Property Editor
• Open-Loop Bode Property Editor
• Open-Loop Nichols Property Editor
• Prefilter Bode Property Editor

You can use each of these property editors to create the customized plots within the SISO
Design tool.

Root Locus Property Editor

There are three ways to open the Property Editor for root locus plots:

• Double-click in the root locus away from the curve
• Select Properties from the right-click menu
• Select Root Locus and then Properties from Edit in the menu bar

This figure shows the Property Editor: Root Locus window.

 Customizing Plots Inside the SISO Design Tool

14-45

• “Labels Pane” on page 14-45
• “Limits Pane” on page 14-46
• “Options Pane” on page 14-47

Labels Pane

You can use the Label pane to specify plot titles and axis labels. To specify a new label,
type the string in the appropriate field. The root locus plot automatically updates.

14 Customizing Response Plot Properties

14-46

Limits Pane

The SISO Design Tool specifies default values for the real and imaginary axes ranges to
make sure that all the poles and zeros in your model appear in the root locus plot. Use
the Limits pane, shown below, to override the default settings.

To change the limits, specify the new limits in the real and imaginary axes Limits fields.
The Auto-Scale check box automatically clears once you click in a different field. Your
root locus diagram updates immediately. If you want to reapply the default limits, select
the Auto-Scale check boxes again.

The Limit Stack pane provides support for storing and retrieving custom limit
specifications. There are four buttons available:

— Add the current limits to the stack

— Retrieve the previous stack entry

— Retrieve the next stack entry

— Remove the current limits from the stack

 Customizing Plots Inside the SISO Design Tool

14-47

Using these buttons, you can store and retrieve any number of saved custom axes limits.

Options Pane

The Options pane contains settings for adding a grid and changing the plot's aspect ratio.

Select Show grid to display a grid on the root locus. If you have damping ratio
constraints on your root locus, selecting Display damping ratios as % peak
overshoot displays the damping ratio values along the grid lines. This figure shows both
options activated for an imported model, Gservo. If you want to verify these settings,
type

load ltiexamples

at the MATLAB prompt and import Gservo from the workspace into your SISO Design
Tool.

14 Customizing Response Plot Properties

14-48

The numbers displayed on the root locus gridlines are the damping ratios as a percentage
of the overshoot values.

If you select the Equal check box in the Aspect Ratio pane, the x and y-axes are set to
equal limit values.

Open-Loop Bode Property Editor

As is the case with the root locus Property Editor, there are three ways to open the Bode
diagram property editor:

• Double-click in the Bode magnitude or phase plot away from the curve.
• Select Properties from the right-click menu.

 Customizing Plots Inside the SISO Design Tool

14-49

• Select Open-Loop Bode and then Properties from Edit in the menu bar.

This figure shows the Property Editor: Open-Loop Bode editor.

• “Labels Pane” on page 14-49
• “Limits Pane” on page 14-50

Labels Pane

You can use the Label pane to specify plot titles and axis labels. To specify a new label,
type the string in the appropriate field. The Bode diagram automatically updates.

14 Customizing Response Plot Properties

14-50

Limits Pane

You can use the Limits pane to override the default limits for the frequency, magnitude,
and phase scales for your plots.

To change the limits, specify the new values in the Limits fields for frequency,
magnitude, and phase. The Auto-Scale check box automatically deactivates once you
click in a different field. The Bode diagram updates immediately.

 Customizing Plots Inside the SISO Design Tool

14-51

To restore the default settings, select the Auto-Scale boxes again.

Open-Loop Nichols Property Editor

As is the case with the root locus Property Editor, there are three ways to open the
Nichols plot property editor:

• Double-click in the Nichols plot away from the curve.
• Select Properties from the right-click menu.
• Select Open-Loop Nichols and then Properties from Edit in the menu bar.

This figure shows the Property Editor: Open-Loop Nichols editor.

• “Labels Pane” on page 14-51
• “Limits Pane” on page 14-52

Labels Pane

You can use the Label pane to specify plot titles and axis labels. To specify a new label,
type the string in the appropriate field. The Nichols plot automatically updates.

14 Customizing Response Plot Properties

14-52

Limits Pane

You can use the Limits pane to override the default limits for the frequency, magnitude,
and phase scales for your plots.

To change the limits, specify the new values in the Limits fields for open-loop phase and/
or gain. The Auto-Scale check box automatically deactivates once you click in a different
field. The Nichols plot updates immediately.

To restore the default settings, select the Auto-Scale boxes again.

Prefilter Bode Property Editor

The Prefilter Bode Property editor is identical to the Open-Loop Bode diagram
property editor. There are three ways to open the prefilter editor:

 Customizing Plots Inside the SISO Design Tool

14-53

• Double-click in the prefilter Bode magnitude or phase plot away from the curve.
• Select Properties from the right-click menu.
• Select Prefilter Bode and then Properties from Edit in the menu bar.

See “Open-Loop Bode Property Editor” on page 14-48 for a description of the features
of this editor.

14 Customizing Response Plot Properties

14-54

Build GUI With Interactive Plot Updates

This example shows how to create a GUI to display a system response plot that changes
in response to interactive input.

The GUI in this example displays the step response of a second-order dynamic system of
fixed natural frequency. The GUI includes a slider that sets the system’s damping ratio.
To cause the response plot to reflect the slider setting, you must define a callback for
the slider. This callback uses the updateSystem command to update the plot with new
system data in response to changes in the slider setting.

Set the initial values of the second-order dynamic system and create the system model.

zeta = .5; % Damping Ratio

wn = 2; % Natural Frequency

sys = tf(wn^2,[1,2*zeta*wn,wn^2]);

Create a figure for the GUI and configure the axes for displaying the step response.

f = figure;

ax = axes('Parent',f,'position',[0.13 0.39 0.77 0.54]);

h = stepplot(ax,sys);

setoptions(h,'XLim',[0,10],'YLim',[0,2]);

Add the slider and slider label text to the figure.

b = uicontrol('Parent',f,'Style','slider','Position',[81,54,419,23],...

 'value',zeta, 'min',0, 'max',1);

bgcolor = f.Color;

bl1 = uicontrol('Parent',f,'Style','text','Position',[50,54,23,23],...

 'String','0','BackgroundColor',bgcolor);

bl2 = uicontrol('Parent',f,'Style','text','Position',[500,54,23,23],...

 'String','1','BackgroundColor',bgcolor);

bl3 = uicontrol('Parent',f,'Style','text','Position',[240,25,100,23],...

 'String','Damping Ratio','BackgroundColor',bgcolor);

 Build GUI With Interactive Plot Updates

14-55

Set the callback that updates the step response plot as the damping ratio slider is moved.

set(b,'Callback',@(es,ed) updateSystem(h,tf(wn^2,[1,2*(es.Value)*wn,wn^2])));

This code sets the callback for the slider (identified as b) to a function that calls
updateSystem. The updateSystem call replaces the plotted response data with a

14 Customizing Response Plot Properties

14-56

response derived from a new transfer function. The new transfer function is a second-
order system whose damping ratio is the current value of the slider.

Move the slider. The displayed step response changes as expected.

See Also
uicontrol | updateSystem

 Build GUI With Interactive Plot Updates

14-57

Related Examples
• “Write Callbacks Using the Programmatic Workflow”

15

Design Case Studies

• “Design Yaw Damper for Jet Transport” on page 15-2
• “Hard-Disk Read/Write Head Controller” on page 15-19
• “LQG Regulation: Rolling Mill Case Study” on page 15-30
• “Kalman Filtering” on page 15-48

15 Design Case Studies

15-2

Design Yaw Damper for Jet Transport

In this section...

“Overview of this Case Study” on page 15-2
“Creating the Jet Model” on page 15-2
“Computing Open-Loop Poles” on page 15-3
“Open-Loop Analysis” on page 15-4
“Root Locus Design” on page 15-8
“Washout Filter Design” on page 15-13

Overview of this Case Study

This case study demonstrates the tools for classical control design by stepping through
the design of a yaw damper for a 747® jet transport aircraft.

Creating the Jet Model

The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A=[-.0558 -.9968 .0802 .0415;

 .598 -.115 -.0318 0;

 -3.05 .388 -.4650 0;

 0 0.0805 1 0];

B=[.00729 0;

 -0.475 0.00775;

 0.153 0.143;

 0 0];

C=[0 1 0 0;

 0 0 0 1];

D=[0 0;

 0 0];

sys = ss(A,B,C,D);

The following commands specify this state-space model as an LTI object and attach
names to the states, inputs, and outputs.

 Design Yaw Damper for Jet Transport

15-3

states = {'beta' 'yaw' 'roll' 'phi'};

inputs = {'rudder' 'aileron'};

outputs = {'yaw' 'bank angle'};

sys = ss(A,B,C,D,'statename',states,...

 'inputname',inputs,...

 'outputname',outputs);

You can display the LTI model sys by typing sys. This command produces the following
result.
a =

 beta yaw roll phi

 beta -0.0558 -0.9968 0.0802 0.0415

 yaw 0.598 -0.115 -0.0318 0

 roll -3.05 0.388 -0.465 0

 phi 0 0.0805 1 0

b =

 rudder aileron

 beta 0.00729 0

 yaw -0.475 0.00775

 roll 0.153 0.143

 phi 0 0

c =

 beta yaw roll phi

 yaw 0 1 0 0

 bank angle 0 0 0 1

d =

 rudder aileron

 yaw 0 0

 bank angle 0 0

Continuous-time model.

The model has two inputs and two outputs. The units are radians for beta (sideslip
angle) and phi (bank angle) and radians/sec for yaw (yaw rate) and roll (roll rate). The
rudder and aileron deflections are in radians as well.

Computing Open-Loop Poles

Compute the open-loop poles and plot them in the s-plane.

>> damp(sys)

 Pole Damping Frequency Time Constant

 (rad/seconds) (seconds)

15 Design Case Studies

15-4

 -7.28e-03 1.00e+00 7.28e-03 1.37e+02

 -5.63e-01 1.00e+00 5.63e-01 1.78e+00

 -3.29e-02 + 9.47e-01i 3.48e-02 9.47e-01 3.04e+01

 -3.29e-02 - 9.47e-01i 3.48e-02 9.47e-01 3.04e+01

pzmap(sys)

This model has one pair of lightly damped poles. They correspond to what is called the
"Dutch roll mode."

Suppose you want to design a compensator that increases the damping of these poles, so
that the resulting complex poles have a damping ratio ζ > 0.35 with natural frequency ωn
< 1 rad/sec. You can do this using the Control System Toolbox analysis tools.

Open-Loop Analysis

First, perform some open-loop analysis to determine possible control strategies. Start
with the time response (you could use step or impulse here).

 Design Yaw Damper for Jet Transport

15-5

impulse(sys)

The impulse response confirms that the system is lightly damped. But the time frame
is much too long because the passengers and the pilot are more concerned about the
behavior during the first few seconds rather than the first few minutes. Next look at the
response over a smaller time frame of 20 seconds.

impulse(sys,20)

15 Design Case Studies

15-6

Look at the plot from aileron (input 2) to bank angle (output 2). To show only this plot,
right-click and choose I/O Selector, then click on the (2,2) entry. The I/O Selector should
look like this.

The new figure is shown below.

 Design Yaw Damper for Jet Transport

15-7

The aircraft is oscillating around a nonzero bank angle. Thus, the aircraft is turning
in response to an aileron impulse. This behavior will prove important later in this case
study.

Typically, yaw dampers are designed using the yaw rate as sensed output and the rudder
as control input. Look at the corresponding frequency response.

sys11=sys('yaw','rudder') % Select I/O pair.

bode(sys11)

15 Design Case Studies

15-8

From this Bode diagram, you can see that the rudder has significant effect around the
lightly damped Dutch roll mode (that is, near ω = 1 rad/sec).

Root Locus Design

A reasonable design objective is to provide a damping ration ζ > 0.35 with a natural
frequency ωn < 1.0 rad/sec. Since the simplest compensator is a static gain, first try to
determine appropriate gain values using the root locus technique.

% Plot the root locus for the rudder to yaw channel

rlocus(sys11)

 Design Yaw Damper for Jet Transport

15-9

This is the root locus for negative feedback and shows that the system goes unstable
almost immediately. If, instead, you use positive feedback, you may be able to keep the
system stable.

rlocus(-sys11)

sgrid

15 Design Case Studies

15-10

This looks better. By using simple feedback, you can achieve a damping ratio of ζ > 0.45.
Click on the blue curve and move the data marker to track the gain and damping values.
To achieve a 0.45 damping ratio, the gain should be about 2.85. This figure shows the
data marker with similar values.

 Design Yaw Damper for Jet Transport

15-11

Next, close the SISO feedback loop.

K = 2.85;

cl11 = feedback(sys11,-K); % Note: feedback assumes negative

 % feedback by default

Plot the closed-loop impulse response for a duration of 20 seconds, and compare it to the
open-loop impulse response.

impulse(sys11,'b--',cl11,'r',20)

15 Design Case Studies

15-12

The closed-loop response settles quickly and does not oscillate much, particularly when
compared to the open-loop response.

Now close the loop on the full MIMO model and see how the response from the aileron
looks. The feedback loop involves input 1 and output 1 of the plant (use feedback with
index vectors selecting this input/output pair). At the MATLAB prompt, type

cloop = feedback(sys,-K,1,1);

damp(cloop) % closed-loop poles

 Pole Damping Frequency Time Constant

 (rad/seconds) (seconds)

 -3.42e-01 1.00e+00 3.42e-01 2.92e+00

 -2.97e-01 + 6.06e-01i 4.40e-01 6.75e-01 3.36e+00

 -2.97e-01 - 6.06e-01i 4.40e-01 6.75e-01 3.36e+00

 -1.05e+00 1.00e+00 1.05e+00 9.50e-01

Plot the MIMO impulse response.

impulse(sys,'b--',cloop,'r',20)

 Design Yaw Damper for Jet Transport

15-13

The yaw rate response is now well damped, but look at the plot from aileron (input 2)
to bank angle (output 2). When you move the aileron, the system no longer continues to
bank like a normal aircraft. You have over-stabilized the spiral mode. The spiral mode
is typically a very slow mode and allows the aircraft to bank and turn without constant
aileron input. Pilots are used to this behavior and will not like your design if it does not
allow them to fly normally. This design has moved the spiral mode so that it has a faster
frequency.

Washout Filter Design

What you need to do is make sure the spiral mode does not move further into the left-
half plane when you close the loop. One way flight control designers have addressed this
problem is to use a washout filter kH(s) where

H s
s

s
() =

+a

The washout filter places a zero at the origin, which constrains the spiral mode pole to
remain near the origin. We choose α = 0.2 for a time constant of five seconds and use the

15 Design Case Studies

15-14

root locus technique to select the filter gain H. First specify the fixed part s/(s + α) of the
washout by

H = zpk(0,-0.2,1);

Connect the washout in series with the design model sys11 (relation between input 1
and output 1) to obtain the open-loop model

oloop = H * sys11;

and draw another root locus for this open-loop model.

rlocus(-oloop)

sgrid

Create and drag a data marker around the upper curve to locate the maximum damping,
which is about ζ = 0.3.

This figure shows a data marker at the maximum damping ratio; the gain is
approximately 2.07.

 Design Yaw Damper for Jet Transport

15-15

Look at the closed-loop response from rudder to yaw rate.

K = 2.07;

cl11 = feedback(oloop,-K);

impulse(cl11,20)

15 Design Case Studies

15-16

The response settles nicely but has less damping than your previous design. Finally,
you can verify that the washout filter has fixed the spiral mode problem. First form the
complete washout filter kH(s) (washout + gain).

WOF = -K * H;

Then close the loop around the first I/O pair of the MIMO model sys and simulate the
impulse response.

cloop = feedback(sys,WOF,1,1);

% Final closed-loop impulse response

impulse(sys,'b--',cloop,'r',20)

 Design Yaw Damper for Jet Transport

15-17

The bank angle response (output 2) due to an aileron impulse (input 2) now has the
desired nearly constant behavior over this short time frame. To inspect the response
more closely, use the I/O Selector in the right-click menu to select the (2,2) I/O pair.

15 Design Case Studies

15-18

Although you did not quite meet the damping specification, your design has increased the
damping of the system substantially and now allows the pilot to fly the aircraft normally.

 Hard-Disk Read/Write Head Controller

15-19

Hard-Disk Read/Write Head Controller

In this section...

“Overview of this Case Study” on page 15-19
“Creating the Read/Write Head Model” on page 15-19
“Model Discretization” on page 15-20
“Adding a Compensator Gain” on page 15-22
“Adding a Lead Network” on page 15-23
“Design Analysis” on page 15-26

Overview of this Case Study

This case study demonstrates the ability to perform classical digital control design by
going through the design of a computer hard-disk read/write head position controller.

Creating the Read/Write Head Model

Using Newton's law, a simple model for the read/write head is the differential equation

J
d

dt

C
d

dt
K K ii

2

2

q q
q+ + =

15 Design Case Studies

15-20

where J is the inertia of the head assembly, C is the viscous damping coefficient of
the bearings, K is the return spring constant, Ki is the motor torque constant, θ is the
angular position of the head, and i is the input current.

Taking the Laplace transform, the transfer function from i to θ is

H s
K

Js Cs K

i() =
+ +2

Using the values J = 0.01 kg m2, C = 0.004 Nm/(rad/sec), K = 10 Nm/rad, and Ki = 0.05
Nm/rad, form the transfer function description of this system. At the MATLAB prompt,
type

J = .01; C = 0.004; K = 10; Ki = .05;

num = Ki;

den = [J C K];

H = tf(num,den)

These commands produce the following result.

Transfer function:

 0.05

0.01 s^2 + 0.004 s + 10

Model Discretization

The task here is to design a digital controller that provides accurate positioning of the
read/write head. The design is performed in the digital domain. First, discretize the
continuous plant. Because our plant will be equipped with a digital-to-analog converter
(with a zero-order hold) connected to its input, use c2d with the 'zoh' discretization
method. Type

Ts = 0.005; % sample time = 0.005 second

Hd = c2d(H,Ts,'zoh')

Transfer function:

6.233e-05 z + 6.229e-05

 z^2 - 1.973 z + 0.998

 Hard-Disk Read/Write Head Controller

15-21

Sample time: 0.005

You can compare the Bode plots of the continuous and discretized models with

bodeplot(H,'-',Hd,'--')

To analyze the discrete system, plot its step response, type

step(Hd)

15 Design Case Studies

15-22

The system oscillates quite a bit. This is probably due to very light damping. You can
check this by computing the open-loop poles. Type

% Open-loop poles of discrete model

damp(Hd)

 Pole Magnitude Damping Frequency Time Constant

 (rad/seconds) (seconds)

 9.87e-01 + 1.57e-01i 9.99e-01 6.32e-03 3.16e+01 5.00e+00

 9.87e-01 - 1.57e-01i 9.99e-01 6.32e-03 3.16e+01 5.00e+00

The poles have very light equivalent damping and are near the unit circle. You need to
design a compensator that increases the damping of these poles.

Adding a Compensator Gain

The simplest compensator is just a gain, so try the root locus technique to select an
appropriate feedback gain.

rlocus(Hd)

 Hard-Disk Read/Write Head Controller

15-23

As shown in the root locus, the poles quickly leave the unit circle and go unstable. You
need to introduce some lead or a compensator with some zeros.

Adding a Lead Network

Try the compensator

D z
z

z b
() =

+
+

a

with α = −0.85 and b = 0.

The corresponding open-loop model

15 Design Case Studies

15-24

is obtained by the series connection

D = zpk(0.85,0,1,Ts)

oloop = Hd * D

Now see how this compensator modifies the open-loop frequency response.

bodeplot(Hd,'--',oloop,'-')

The plant response is the dashed line and the open-loop response with the compensator is
the solid line.

The plot above shows that the compensator has shifted up the phase plot (added lead) in
the frequency range ω > 10 rad/sec.

Now try the root locus again with the plant and compensator as open loop.

rlocus(oloop)

zgrid

Open the Property Editor by right-clicking in the plot away from the curve. On the
Limits page, set the x- and y-axis limits from -1 to 1.01. This figure shows the result.

 Hard-Disk Read/Write Head Controller

15-25

This time, the poles stay within the unit circle for some time (the lines drawn by zgrid
show the damping ratios from ζ = 0 to 1 in steps of 0.1). Use a data marker to find the
point on the curve where the gain equals 4.111e+03. This figure shows the data marker
at the correct location.

15 Design Case Studies

15-26

Design Analysis

To analyze this design, form the closed-loop system and plot the closed-loop step
response.

K = 4.11e+03;

cloop = feedback(oloop,K);

step(cloop)

 Hard-Disk Read/Write Head Controller

15-27

This response depends on your closed loop set point. The one shown here is relatively fast
and settles in about 0.07 seconds. Therefore, this closed loop disk drive system has a seek
time of about 0.07 seconds. This is slow by today's standards, but you also started with a
very lightly damped system.

Now look at the robustness of your design. The most common classical robustness criteria
are the gain and phase margins. Use the function margin to determine these margins.
With output arguments, margin returns the gain and phase margins as well as the
corresponding crossover frequencies. Without output argument, margin plots the Bode
response and displays the margins graphically.

To compute the margins, first form the unity-feedback open loop by connecting the
compensator D(z), plant model, and feedback gain k in series.

olk = K * oloop;

15 Design Case Studies

15-28

Next apply margin to this open-loop model. Type

[Gm,Pm,Wcg,Wcp] = margin(olk);

Margins = [Gm Wcg Pm Wcp]

Margins =

 3.7987 296.7978 43.2031 106.2462

To obtain the gain margin in dB, type

20*log10(Gm)

ans =

 11.5926

You can also display the margins graphically by typing

margin(olk)

The command produces the plot shown below.

 Hard-Disk Read/Write Head Controller

15-29

This design is robust and can tolerate a 11 dB gain increase or a 40 degree phase lag
in the open-loop system without going unstable. By continuing this design process, you
may be able to find a compensator that stabilizes the open-loop system and allows you to
reduce the seek time.

15 Design Case Studies

15-30

LQG Regulation: Rolling Mill Case Study
In this section...

“Overview of this Case Study” on page 15-30
“Process and Disturbance Models” on page 15-30
“LQG Design for the x-Axis” on page 15-33
“LQG Design for the y-Axis” on page 15-39
“Cross-Coupling Between Axes” on page 15-41
“MIMO LQG Design” on page 15-44

Overview of this Case Study

This case study demonstrates the use of the LQG design tools in a process control
application. The goal is to regulate the horizontal and vertical thickness of the beam
produced by a hot steel rolling mill. This example is adapted from [1]. The full plant
model is MIMO and the example shows the advantage of direct MIMO LQG design over
separate SISO designs for each axis. Type

milldemo

at the command line to run this demonstration interactively.

Process and Disturbance Models

The rolling mill is used to shape rectangular beams of hot metal. The desired outgoing
shape is sketched below.

 LQG Regulation: Rolling Mill Case Study

15-31

This shape is impressed by two pairs of rolling cylinders (one per axis) positioned by
hydraulic actuators. The gap between the two cylinders is called the roll gap.

The objective is to maintain the beam thickness along the x- and y-axes within the
quality assurance tolerances. Variations in output thickness can arise from the following:

• Variations in the thickness/hardness of the incoming beam
• Eccentricity in the rolling cylinders

Feedback control is necessary to reduce the effect of these disturbances. Because the
roll gap cannot be measured close to the mill stand, the rolling force is used instead for
feedback.

The input thickness disturbance is modeled as a low pass filter driven by white noise.
The eccentricity disturbance is approximately periodic and its frequency is a function of
the rolling speed. A reasonable model for this disturbance is a second-order bandpass
filter driven by white noise.

This leads to the following generic model for each axis of the rolling process.

15 Design Case Studies

15-32

The measured rolling force variation f is a combination of the incremental force delivered
by the hydraulic actuator and of the disturbance forces due to eccentricity and input
thickness variation. Note that:

• The outputs of H(s), Fe(s), and Fi(s) are the incremental forces delivered by each
component.

• An increase in hydraulic or eccentricity force reduces the output thickness gap δ.
• An increase in input thickness increases this gap.

The model data for each axis is summarized below.

 LQG Regulation: Rolling Mill Case Study

15-33

Model Data for the x-Axis

H s
s s

F s
s

F s
s

s

x

ix

ex

()
.

()
.

()
.

= ×
+ +

=
+

=
×

+

2 4 10

72 90

10

0 05

3 10

0 1

8

2 2

4

4

2
225 6

10

2

6

s

gx

+
= −

Model Data for the y-Axis

H s
s s

F s
s

F s
s

s

y

iy

ey

()
.

()
.

()
.

=
×

+ +

=
×
+

=
+

7 8 10

71 88

2 10

0 05

10

0 1

8

2 2

4

5

2
99 9 4

0 5 10

2

6

s

gy

+
= × −

.

.

LQG Design for the x-Axis

As a first approximation, ignore the cross-coupling between the x- and y-axes and treat
each axis independently. That is, design one SISO LQG regulator for each axis. The
design objective is to reduce the thickness variations δx and δy due to eccentricity and
input thickness disturbances.

Start with the x-axis. First specify the model components as transfer function objects.

% Hydraulic actuator (with input "u-x")

Hx = tf(2.4e8,[1 72 90^2],'inputname','u-x')

% Input thickness/hardness disturbance model

Fix = tf(1e4,[1 0.05],'inputn','w-ix')

15 Design Case Studies

15-34

% Rolling eccentricity model

Fex = tf([3e4 0],[1 0.125 6^2],'inputn','w-ex')

% Gain from force to thickness gap

gx = 1e-6;

Next build the open-loop model shown in “Process and Disturbance Models” on page
15-30. You could use the function connect for this purpose, but it is easier to build
this model by elementary append and series connections.

% I/O map from inputs to forces f1 and f2

Px = append([ss(Hx) Fex],Fix)

% Add static gain from f1,f2 to outputs "x-gap" and "x-force"

Px = [-gx gx;1 1] * Px

% Give names to the outputs:

set(Px,'outputn',{'x-gap' 'x-force'})

Note To obtain minimal state-space realizations, always convert transfer function models
to state space before connecting them. Combining transfer functions and then converting
to state space may produce nonminimal state-space models.

The variable Px now contains an open-loop state-space model complete with input and
output names.

Px.inputname

ans =

 'u-x'

 'w-ex'

 'w-ix'

Px.outputname

ans =

 'x-gap'

 'x-force'

The second output 'x-force' is the rolling force measurement. The LQG regulator will
use this measurement to drive the hydraulic actuator and reduce disturbance-induced
thickness variations δx.

 LQG Regulation: Rolling Mill Case Study

15-35

The LQG design involves two steps:

1 Design a full-state-feedback gain that minimizes an LQ performance measure of the
form

J u q ru dtx x x() = +{ }∞
∫ d

2 2

0

2 Design a Kalman filter that estimates the state vector given the force measurements
'x-force'.

The performance criterion J(ux) penalizes low and high frequencies equally. Because low-
frequency variations are of primary concern, eliminate the high-frequency content of
δx with the low-pass filter 30/(s + 30) and use the filtered value in the LQ performance
criterion.

lpf = tf(30,[1 30])

% Connect low-pass filter to first output of Px

Pxdes = append(lpf,1) * Px

set(Pxdes,'outputn',{'x-gap*' 'x-force'})

% Design the state-feedback gain using LQRY and q=1, r=1e-4

kx = lqry(Pxdes(1,1),1,1e-4)

Note lqry expects all inputs to be commands and all outputs to be measurements. Here
the command 'u-x' and the measurement 'x-gap*' (filtered gap) are the first input
and first output of Pxdes. Hence, use the syntax Pxdes(1,1) to specify just the I/O
relation between 'u-x' and 'x-gap*'.

Next, design the Kalman estimator with the function kalman. The process noise

w
w

w
x

ex

ix

=










has unit covariance by construction. Set the measurement noise covariance to 1000
to limit the high frequency gain, and keep only the measured output 'x-force' for
estimator design.

estx = kalman(Pxdes(2,:),eye(2),1000)

15 Design Case Studies

15-36

Finally, connect the state-feedback gain kx and state estimator estx to form the LQG
regulator.

Regx = lqgreg(estx,kx)

This completes the LQG design for the x−axis.

Let's look at the regulator Bode response between 0.1 and 1000 rad/sec.

h = bodeplot(Regx,{0.1 1000})

setoptions(h,'PhaseMatching','on')

The phase response has an interesting physical interpretation. First, consider an
increase in input thickness. This low-frequency disturbance boosts both output thickness
and rolling force. Because the regulator phase is approximately 0o at low frequencies,
the feedback loop then adequately reacts by increasing the hydraulic force to offset
the thickness increase. Now consider the effect of eccentricity. Eccentricity causes
fluctuations in the roll gap (gap between the rolling cylinders). When the roll gap is
minimal, the rolling force increases and the beam thickness diminishes. The hydraulic
force must then be reduced (negative force feedback) to restore the desired thickness.

 LQG Regulation: Rolling Mill Case Study

15-37

This is exactly what the LQG regulator does as its phase drops to -180o near the natural
frequency of the eccentricity disturbance (6 rad/sec).

Next, compare the open- and closed-loop responses from disturbance to thickness gap.
Use feedback to close the loop. To help specify the feedback connection, look at the I/O
names of the plant Px and regulator Regx.

Px.inputname

ans =

 'u-x'

 'w-ex'

 'w-ix'

Regx.outputname

ans =

 'u-x'

Px.outputname

ans =

 'x-gap'

 'x-force'

Regx.inputname

ans =

 'x-force'

This indicates that you must connect the first input and second output of Px to the
regulator.

clx = feedback(Px,Regx,1,2,+1) % Note: +1 for positive feedback

You are now ready to compare the open- and closed-loop Bode responses from
disturbance to thickness gap.

h = bodeplot(Px(1,2:3),'--',clx(1,2:3),'-',{0.1 100})

setoptions(h,'PhaseMatching','on')

15 Design Case Studies

15-38

The dashed lines show the open-loop response. Note that the peak gain of the
eccentricity-to-gap response and the low-frequency gain of the input-thickness-to-gap
response have been reduced by about 20 dB.

Finally, use lsim to simulate the open- and closed-loop time responses to the white
noise inputs wex and wix. Choose dt=0.01 as sample time for the simulation, and derive
equivalent discrete white noise inputs for this sampling rate.

dt = 0.01

t = 0:dt:50 % time samples

% Generate unit-covariance driving noise wx = [w-ex;w-ix].

% Equivalent discrete covariance is 1/dt

wx = sqrt(1/dt) * randn(2,length(t))

lsim(Px(1,2:3),':',clx(1,2:3),'-',wx,t)

Right-click on the plot that appears and select Show Input to turn off the display of the
input.

 LQG Regulation: Rolling Mill Case Study

15-39

The dotted lines correspond to the open-loop response. In this simulation, the LQG
regulation reduces the peak thickness variation by a factor 4.

LQG Design for the y-Axis

The LQG design for the y-axis (regulation of the y thickness) follows the exact same steps
as for the x-axis.

% Specify model components

Hy = tf(7.8e8,[1 71 88^2],'inputn','u-y')

Fiy = tf(2e4,[1 0.05],'inputn','w-iy')

Fey = tf([1e5 0],[1 0.19 9.4^2],'inputn','w-ey')

gy = 0.5e-6 % force-to-gap gain

% Build open-loop model

Py = append([ss(Hy) Fey],Fiy)

Py = [-gy gy;1 1] * Py

set(Py,'outputn',{'y-gap' 'y-force'})

% State-feedback gain design

15 Design Case Studies

15-40

Pydes = append(lpf,1) * Py % Add low-freq. weigthing

set(Pydes,'outputn',{'y-gap*' 'y-force'})

ky = lqry(Pydes(1,1),1,1e-4)

% Kalman estimator design

esty = kalman(Pydes(2,:),eye(2),1e3)

% Form SISO LQG regulator for y-axis and close the loop

Regy = lqgreg(esty,ky)

cly = feedback(Py,Regy,1,2,+1)

Compare the open- and closed-loop response to the white noise input disturbances.

dt = 0.01

t = 0:dt:50

wy = sqrt(1/dt) * randn(2,length(t))

lsim(Py(1,2:3),':',cly(1,2:3),'-',wy,t)

Right-click on the plot that appears and select Show Input to turn off the display of the
input.

 LQG Regulation: Rolling Mill Case Study

15-41

The dotted lines correspond to the open-loop response. The simulation results are
comparable to those for the x-axis.

Cross-Coupling Between Axes

The x/y thickness regulation, is a MIMO problem. So far you have treated each axis
separately and closed one SISO loop at a time. This design is valid as long as the two
axes are fairly decoupled. Unfortunately, this rolling mill process exhibits some degree of
cross-coupling between axes. Physically, an increase in hydraulic force along the x-axis
compresses the material, which in turn boosts the repelling force on the y-axis cylinders.
The result is an increase in y-thickness and an equivalent (relative) decrease in hydraulic
force along the y-axis.

The figure below shows the coupling.

15 Design Case Studies

15-42

Accordingly, the thickness gaps and rolling forces are related to the outputs dx xf, ,… of
the x- and y-axis models by

 LQG Regulation: Rolling Mill Case Study

15-43

d

d

x

y

x

x

yx x

xy y

yx

xy

f

f

g g

g g

g

g





















=
−

−









1 0 0

0 1 0

0 0 1

0 0 1

























cross-coupling matrix
1 24444 34444

d

d

x

y

x

y

f

f 







Let's see how the previous "decoupled" LQG design fares when cross-coupling is taken
into account. To build the two-axes model, shown above, append the models Px and Py for
the x- and y-axes.

P = append(Px,Py)

For convenience, reorder the inputs and outputs so that the commands and thickness
gaps appear first.

P = P([1 3 2 4],[1 4 2 3 5 6])

P.outputname

ans =

 'x-gap'

 'y-gap'

 'x-force'

 'y-force'

Finally, place the cross-coupling matrix in series with the outputs.

gxy = 0.1; gyx = 0.4;

CCmat = [eye(2) [0 gyx*gx;gxy*gy 0] ; zeros(2) [1 -gyx;-gxy 1]]

Pc = CCmat * P

Pc.outputname = P.outputname

To simulate the closed-loop response, also form the closed-loop model by

feedin = 1:2 % first two inputs of Pc are the commands

feedout = 3:4 % last two outputs of Pc are the measurements

cl = feedback(Pc,append(Regx,Regy),feedin,feedout,+1)

You are now ready to simulate the open- and closed-loop responses to the driving white
noises wx (for the x-axis) and wy (for the y-axis).

wxy = [wx ; wy]

lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

15 Design Case Studies

15-44

Right-click on the plot that appears and select Show Input to turn off the display of the
input.

The response reveals a severe deterioration in regulation performance along the x-axis
(the peak thickness variation is about four times larger than in the simulation without
cross-coupling). Hence, designing for one loop at a time is inadequate for this level of
cross-coupling, and you must perform a joint-axis MIMO design to correctly handle
coupling effects.

MIMO LQG Design

Start with the complete two-axis state-panespace model Pc derived in “Cross-Coupling
Between Axes” on page 15-41. The model inputs and outputs are

Pc.inputname

ans =

 'u-x'

 'u-y'

 'w-ex'

 LQG Regulation: Rolling Mill Case Study

15-45

 'w-ix'

 'w_ey'

 'w_iy'

P.outputname

ans =

 'x-gap'

 'y-gap'

 'x-force'

 'y-force'

As earlier, add low-pass filters in series with the 'x-gap' and 'y-gap' outputs to
penalize only low-frequency thickness variations.

Pdes = append(lpf,lpf,eye(2)) * Pc

Pdes.outputn = Pc.outputn

Next, design the LQ gain and state estimator as before (there are now two commands
and two measurements).

k = lqry(Pdes(1:2,1:2),eye(2),1e-4*eye(2)) % LQ gain

est = kalman(Pdes(3:4,:),eye(4),1e3*eye(2)) % Kalman estimator

RegMIMO = lqgreg(est,k) % form MIMO LQG regulator

The resulting LQG regulator RegMIMO has two inputs and two outputs.

RegMIMO.inputname

ans =

 'x-force'

 'y-force'

RegMIMO.outputname

ans =

 'u-x'

 'u-y'

Plot its singular value response (principal gains).

sigma(RegMIMO)

15 Design Case Studies

15-46

Next, plot the open- and closed-loop time responses to the white noise inputs (using the
MIMO LQG regulator for feedback).

% Form the closed-loop model

cl = feedback(Pc,RegMIMO,1:2,3:4,+1);

% Simulate with lsim using same noise inputs

lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

Right-click on the plot that appears and select Show Input to turn off the display of the
input.

 LQG Regulation: Rolling Mill Case Study

15-47

The MIMO design is a clear improvement over the separate SISO designs for each axis.
In particular, the level of x/y thickness variation is now comparable to that obtained
in the decoupled case. This example illustrates the benefits of direct MIMO design for
multivariable systems.

References

[1] Grimble, M.J., Robust Industrial Control: Optimal Design Approach for Polynomial
Systems, Prentice Hall, 1994, p. 261 and pp. 443-456.

15 Design Case Studies

15-48

Kalman Filtering

This case study illustrates Kalman filter design and simulation. Both steady-state and
time-varying Kalman filters are considered.

Overview of the Case Study

This case study illustrates Kalman filter design and simulation. Both steady-state and
time-varying Kalman filters are considered.

Consider a discrete plant with additive Gaussian noise on the input :

The following matrices represent the dynamics of this plant.

A = [1.1269 -0.4940 0.1129;

 1.0000 0 0;

 0 1.0000 0];

B = [-0.3832;

 0.5919;

 0.5191];

C = [1 0 0];

Discrete Kalman Filter

The equations of the steady-state Kalman filter for this problem are given as follows.

• Measurement update:

• Time update:

In these equations:

• is the estimate of , given past measurements up to .

 Kalman Filtering

15-49

• is the updated estimate based on the last measurement .

Given the current estimate , the time update predicts the state value at the next
sample n + 1 (one-step-ahead predictor). The measurement update then adjusts this
prediction based on the new measurement . The correction term is a function
of the innovation, that is, the discrepancy between the measured and predicted values of

. This discrepancy is given by:

The innovation gain M is chosen to minimize the steady-state covariance of the
estimation error, given the noise covariances:

You can combine the time and measurement update equations into one state-space
model, the Kalman filter:

This filter generates an optimal estimate of . Note that the filter state is
.

Steady-State Design

You can design the steady-state Kalman filter described above with the function kalman.
First specify the plant model with the process noise:

Here, the first expression is the state equation, and the second is the measurement
equation.

The following command specifies this plant model. The sample time is set to -1, to mark
the model as discrete without specifying a sample time.

15 Design Case Studies

15-50

Plant = ss(A,[B B],C,0,-1,'inputname',{'u' 'w'},'outputname','y');

Assuming that Q = R = 1, design the discrete Kalman filter.

Q = 1;

R = 1;

[kalmf,L,P,M] = kalman(Plant,Q,R);

This command returns a state-space model kalmf of the filter, as well as the innovation
gain M.

M

M =

 0.3798

 0.0817

 -0.2570

The inputs of kalmf are u and , and. The outputs are the plant output and the state
estimates, and .

Because you are interested in the output estimate , select the first output of kalmf and
discard the rest.

kalmf = kalmf(1,:);

To see how the filter works, generate some input data and random noise and compare
the filtered response with the true response y. You can either generate each response
separately, or generate both together. To simulate each response separately, use lsim
with the plant alone first, and then with the plant and filter hooked up together. The
joint simulation alternative is detailed next.

The block diagram below shows how to generate both true and filtered outputs.

 Kalman Filtering

15-51

You can construct a state-space model of this block diagram with the functions parallel
and feedback. First build a complete plant model with u, w, v as inputs, and y and
(measurements) as outputs.

a = A;

b = [B B 0*B];

c = [C;C];

d = [0 0 0;0 0 1];

P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},'outputname',{'y' 'yv'});

Then use parallel to form the parallel connection of the following illustration.

sys = parallel(P,kalmf,1,1,[],[]);

Finally, close the sensor loop by connecting the plant output to filter input with
positive feedback.

15 Design Case Studies

15-52

SimModel = feedback(sys,1,4,2,1); % Close loop around input #4 and output #2

SimModel = SimModel([1 3],[1 2 3]); % Delete yv from I/O list

The resulting simulation model has w, v, u as inputs, and y and as outputs. View the
InputName and OutputName properties to verify.

SimModel.InputName

ans =

 'w'

 'v'

 'u'

SimModel.OutputName

ans =

 'y'

 'y_e'

You are now ready to simulate the filter behavior. Generate a sinusoidal input u and
process and measurement noise vectors w and v.

t = [0:100]';

u = sin(t/5);

n = length(t);

rng('default')

w = sqrt(Q)*randn(n,1);

v = sqrt(R)*randn(n,1);

Simulate the responses.

[out,x] = lsim(SimModel,[w,v,u]);

y = out(:,1); % true response

ye = out(:,2); % filtered response

yv = y + v; % measured response

Compare the true and filtered responses graphically.

 Kalman Filtering

15-53

subplot(211), plot(t,y,'--',t,ye,'-'),

xlabel('No. of samples'), ylabel('Output')

title('Kalman filter response')

subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'),

xlabel('No. of samples'), ylabel('Error')

The first plot shows the true response y (dashed line) and the filtered output (solid
line). The second plot compares the measurement error (dash-dot) with the estimation
error (solid). This plot shows that the noise level has been significantly reduced. This
is confirmed by calculating covariance errors. The error covariance before filtering
(measurement error) is:

MeasErr = y-yv;

15 Design Case Studies

15-54

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr)

MeasErrCov =

 0.9992

The error covariance after filtering (estimation error) is reduced:

EstErr = y-ye;

EstErrCov = sum(EstErr.*EstErr)/length(EstErr)

EstErrCov =

 0.4944

Time-Varying Kalman Filter

The time-varying Kalman filter is a generalization of the steady-state filter for time-
varying systems or LTI systems with nonstationary noise covariance.

Consider the following plant state and measurement equations.

The time-varying Kalman filter is given by the following recursions:

• Measurement update:

• Time update:

 Kalman Filtering

15-55

Here, and are as described previously. Additionally:

For simplicity, the subscripts indicating the time dependence of the state-space matrices
have been dropped.

Given initial conditions and , you can iterate these equations to perform the
filtering. You must update both the state estimates and error covariance matrices

 at each time sample.

Time-Varying Design

To implement these filter recursions, first genereate noisy output measurements. Use the
process noise w and measurement noise v generated previously.

sys = ss(A,B,C,0,-1);

y = lsim(sys,u+w);

yv = y + v;

Assume the following initial conditions:

Implement the time-varying filter with a for loop.

P = B*Q*B'; % Initial error covariance

x = zeros(3,1); % Initial condition on the state

ye = zeros(length(t),1);

ycov = zeros(length(t),1);

for i=1:length(t)

 % Measurement update

 Mn = P*C'/(C*P*C'+R);

 x = x + Mn*(yv(i)-C*x); % x[n|n]

 P = (eye(3)-Mn*C)*P; % P[n|n]

 ye(i) = C*x;

15 Design Case Studies

15-56

 errcov(i) = C*P*C';

 % Time update

 x = A*x + B*u(i); % x[n+1|n]

 P = A*P*A' + B*Q*B'; % P[n+1|n]

end

Compare the true and estimated output graphically.

subplot(211), plot(t,y,'--',t,ye,'-')

title('Time-varying Kalman filter response')

xlabel('No. of samples'), ylabel('Output')

subplot(212), plot(t,y-yv,'-.',t,y-ye,'-')

xlabel('No. of samples'), ylabel('Output')

 Kalman Filtering

15-57

The first plot shows the true response y (dashed line) and the filtered response (solid
line). The second plot compares the measurement error (dash-dot) with the estimation
error (solid).

The time-varying filter also estimates the covariance errcov of the estimation error
 at each sample. Plot it to see if your filter reached steady state (as you expect with

stationary input noise).

subplot(211)

plot(t,errcov), ylabel('Error covar')

From this covariance plot, you can see that the output covariance did indeed reach a
steady state in about five samples. From then on, your time-varying filter has the same
performance as the steady-state version.

15 Design Case Studies

15-58

Compare with the estimation error covariance derived from the experimental data:

EstErr = y - ye;

EstErrCov = sum(EstErr.*EstErr)/length(EstErr)

EstErrCov =

 0.4934

This value is smaller than the theoretical value errcov and close to the value obtained
for the steady-state design.

Finally, note that the final value and the steady-state value M of the innovation
gain matrix coincide.

Mn

Mn =

 0.3798

 0.0817

 -0.2570

M

M =

 0.3798

 0.0817

 -0.2570

Bibliography

[1] Grimble, M.J., Robust Industrial Control: Optimal Design Approach for Polynomial
Systems, Prentice Hall, 1994, p. 261 and pp. 443-456.

16

Reliable Computations

16 Reliable Computations

16-2

Scaling State-Space Models

In this section...

“Why Scaling Is Important” on page 16-2
“When to Scale Your Model” on page 16-2
“Manually Scaling Your Model” on page 16-3

Why Scaling Is Important

When working with state-space models, proper scaling is important for accurate
computations. A state-space model is well scaled when the following conditions exist:

• The entries of the A, B, and C matrices are homogenous in magnitude.
• The model characteristics are insensitive to small perturbations in A, B, and C (in

comparison to their norms).

Working with poorly scaled models can cause your model a severe loss of accuracy and
puzzling results. An example of a poorly scaled model is a dynamic system with two
states in the state vector that have units of light years and millimeters. Such disparate
units may introduce both very large and very small entries into the A matrix. Over the
course of computations, this mix of small and large entries in the matrix could destroy
important characteristics of the model and lead to incorrect results.

For more information on the harmful affects of a poorly scaled model, see Scaling Models
to Maximize Accuracy.

When to Scale Your Model

You can avoid scaling issues altogether by carefully selecting units to reduce the spread
between small and large coefficients.

In general, you do not have to perform your own scaling when using the Control System
Toolbox software. The algorithms automatically scale your model to prevent loss of
accuracy. The automated scaling chooses a frequency range to maximize accuracy based
on the dominant dynamics of the model.

In most cases, automated scaling provides high accuracy without your intervention.
For some models with dynamics spanning a wide frequency range, however, it is

 Scaling State-Space Models

16-3

impossible to achieve good accuracy at all frequencies and some tradeoff of accuracy in
different frequency bands is necessary. In such cases, a warning alerts you of potential
inaccuracies. If you receive this warning, evaluate the tradeoffs and consider manually
adjusting the frequency interval where you most need high accuracy. For information on
how to manually scale your model, see “Manually Scaling Your Model” on page 16-3.

Note: For models with satisfactory scaling, you can bypass automated scaling in the
Control System Toolbox software. To do so, set the Scaled property of your state-space
model to 1 (true). For information on how to set this property, see the set reference page.

Manually Scaling Your Model

If automatic scaling produces a warning, you can use the prescale command to
manually scale your model and adjust the frequency interval where you most need high
accuracy.

The prescale command includes a Scaling Tool GUI, which you can use to visualize
accuracy tradeoffs and to adjust the frequency interval where this accuracy is maximized.

To scale your model using the Scaling Tool GUI, you perform the following steps:

• “Opening the Scaling Tool GUI” on page 16-3
• “Specifying the Frequency Axis Limits in the Scaling Tool GUI” on page 16-5
• “Specifying the Frequency Band for Maximum Accuracy in the Scaling Tool GUI” on

page 16-5
• “Saving the Scaling in the Scaling Tool GUI” on page 16-6

For an example of using the Scaling Tool GUI on a real model, see Scaling Models to
Maximize Accuracy.

For more information about scaling models from the command line, see the prescale
reference page.

Opening the Scaling Tool GUI

To open the Scaling Tool GUI for a state-space model named sys, type

prescale(sys)

The Scaling Tool GUI resembles one shown in the following figure.

16 Reliable Computations

16-4

The Scaling Tool GUI contains the following plots:

• The Frequency Response Gain plot helps you determine the frequency band over
which you want to maximize scaling.

For SISO systems, this plot shows the gain of your model. For MIMO systems, the
plot shows the principle gain (largest singular value) of your model.

• The Frequency Response Accuracy plot allows you to view the accuracy tradeoffs
for your model when maximizing accuracy in a particular frequency bands.

This plot shows the following information:

• Relative accuracy of the response of the original unscaled model in red
• Relative accuracy of the response of the scaled model in blue
• Best achievable accuracy when using independent scaling at each frequency in

brown

 Scaling State-Space Models

16-5

When you compute some model characteristics, such as the frequency response or
the system zeros, the software produces the exact answer for some perturbation of
the model you specified. The relative accuracy is a measure of the worst-case relative
gap between the frequency response of the original and perturbed models. The
perturbation accounts for rounding errors during calculation. Any relative accuracy
value greater than 1 implies poor accuracy.

Tip If the blue Scaled curve is close to the brown Pointwise Optimal curve in a
particular frequency band, you already have the best possible accuracy in that
frequency band.

Specifying the Frequency Axis Limits in the Scaling Tool GUI

You can change the limits of the plot axis to view a particular frequency band of interest
in the Scaling Tool GUI. To view a particular frequency band, specify the band in the
Show response in the frequency band fields.

This action updates the frequency axis of the Scaling tool to show the specified frequency
band.

Tip To return to the default display, select the Auto check box.

Specifying the Frequency Band for Maximum Accuracy in the Scaling Tool GUI

To adjust the frequency band where you want maximum accuracy, set a new frequency
band in the Maximize accuracy in the frequency band fields. You can visualize
accuracy tradeoffs by trying out different frequency bands and viewing the resulting
relative accuracy across the frequency band of interest.

Note: You can use the Frequency Response Gain plot, which plots the gain of your
model, to view the dynamics in your model to help determine the frequency band to
maximize accuracy.

Each time you specify a new frequency band, the Frequency Response Accuracy
plot updates with the result of the new scaling. Compare the Scaled curve (blue) to the

16 Reliable Computations

16-6

Pointwise Optimal curve (brown) to determine where the new scaling is nearly optimal
and where you need more accuracy.

Tip To return to the default scaling, select the Auto check box.

Saving the Scaling in the Scaling Tool GUI

When you find a good scaling for your model, save the scaled model as follows:

1 Click Save Scaling.

This action opens the Save to Workspace dialog box.

2 In the Save to Workspace dialog box, verify that any of the following items you
want to save are selected, and specify variable names for these items.

• Scaled model
• Scaling information, including:

• Scaling factors
• Frequencies used to test accuracy
• Relative accuracy at each test frequency

For details about the scaling information, see the prescale reference page.
3 Click OK.

This action sets the State-Space (@ss) object Scaled property of your model to true.
When you set this property to True, the Control System Toolbox algorithms skip the
automated scaling of the model.

Using the SISO Design Tool and
the Linear System Analyzer

17

SISO Design Tool

• “SISO Design Tool Overview” on page 17-2
• “Opening the SISO Design Tool” on page 17-3
• “Using the SISO Design Task Node” on page 17-4
• “Using the SISO Design Task in the Controls & Estimation Tools Manager” on page

17-11
• “SISO Design Task Graphical Tuning Window” on page 17-40
• “Using the Graphical Tuning Window Menu Bar” on page 17-42
• “Using the Graphical Tuning Window Toolbar” on page 17-53
• “Using the Right-Click Menus in the Graphical Tuning Window” on page 17-54
• “Linear System Analyzer for SISO Design Task Design Requirements” on page

17-73

17 SISO Design Tool

17-2

SISO Design Tool Overview

The SISO Design Tool is a graphical-user interface (GUI) to design compensators.

The SISO Design Tool has the following components:

• The SISO Design Task Node in the Control and Estimation Tools Manager, a user
interface (UI) that facilitates the design of compensators for single-input, single-
output feedback loops through a series of interactive panes.

• The Graphical Tuning Window, a graphical user interface (GUI) for displaying and
manipulating the Bode, root locus, and Nichols plots for the controller currently being
designed. This window is titled SISO Design for Design Name. The Graphical Tuning
Window by default displays the root locus and Bode diagrams for your imported
systems. The two are dynamically linked; for example, if you change the gain in the
root locus, it immediately affects the Bode diagrams as well.

• The SISO Design Task-associated Linear System Analyzer.
• A tool that automatically generates compensators using PID, internal model control

(IMC), or linear-quadratic-Gaussian (LQG) methods.
• Optimization-based tuning methods that automatically tune the system to satisfy

design requirements (available if you have Simulink Design Optimization software
installed).

For more information about SISO Design Tool menus and options, see:

• “Opening the SISO Design Tool” on page 17-3
• “Using the SISO Design Task Node” on page 17-4
• “Using the SISO Design Task in the Controls & Estimation Tools Manager” on page

17-11
• “SISO Design Task Graphical Tuning Window” on page 17-40
• “Using the Graphical Tuning Window Menu Bar” on page 17-42
• “Using the Graphical Tuning Window Toolbar” on page 17-53
• “Using the Right-Click Menus in the Graphical Tuning Window” on page 17-54
• “Linear System Analyzer for SISO Design Task Design Requirements” on page

17-73

 Opening the SISO Design Tool

17-3

Opening the SISO Design Tool

To open the SISO Design Task node in the Control and Estimation Tools Manager and
the Graphical Tuning Window, type

controlSystemDesigner

Load the Gservo model that you want to control in the MATLAB workspace by typing

load ltiexamples

In the Architecture tab of the Control and Estimation Tools Manager GUI, click
System Data to import the model into the SISO Design Tool.

Tip You can import LTI models and arrays of LTI models for the plant G and sensor H
into the SISO Design Tool. For more information, see “Importing Models into the SISO
Design Tool”.

Alternatively, to open the SISO Design Tool with the Gservo system, type

controlSystemDesigner(Gservo)

Note: You can also open the SISO Design Tool from the MATLAB desktop. To do so, in
the Apps tab, click Control System Designer. Then, in the Control and Estimation
Tools Manager, click System Data to specify your plant model.

17 SISO Design Tool

17-4

Using the SISO Design Task Node

In this section...

“The SISO Design Task Node” on page 17-4
“SISO Design Task Node Menu Bar” on page 17-4

The SISO Design Task Node

The following figure shows the SISO Design Task node in the Control and Estimation
Tools Manager.

SISO Design Task Node on the Control and Estimation Tools Manager

SISO Design Task Node Menu Bar

The SISO Design Task node menu bar contains the following menus:

 Using the SISO Design Task Node

17-5

File Menu Options
Load
Save
Export
Close

• Load

To load a saved SISO Design Tool project, select Load from the File menu. This
opens the Load Projects window.

Projects are saved as MAT-files. Select the project you want to load from the list, or
click ... to browse for projects you can select from, and click OK.

• Save

You can exit the MATLAB technical computing environment and later restore the
SISO Design Tool to the state you left it in by saving the project. Select Save from the
File menu. This opens the Save Projects window.

17 SISO Design Tool

17-6

To save a project, specify a file name and click OK. The current state and
configuration of your SISO Design Tool are saved as a MAT-file. To load a saved
project, select Load from the File menu (see previous bullet).

• Export

Selecting Export from the File menu opens the SISO Tool Export window.

 Using the SISO Design Task Node

17-7

You can perform the following tasks in this window:

• Export models to the MATLAB workspace or to a disk. The exported models are:

• LTI objects if the plant and sensor are LTI models
• Arrays of LTI objects if the plant or sensor are arrays of LTI models

• Rename models when exporting
• Save variations on models, including open and closed loop models, sensitivity

transfer functions, and state-space representations

To export models to the MATLAB workspace, follow these steps:

1 Select the model you want to export from the Component list by left-clicking the
model name. To select more than one model, hold down the Shift key if they are
adjacent on the list. If you want to save nonadjacent models, hold down the Ctrl key
while selecting the models.

2 For each model you want to save, specify a name in the model's cell in the Export As
list. A default name exists if you do not want to assign a new name.

3 Click Export to Workspace.

17 SISO Design Tool

17-8

If you want to save your models as a MAT-file, follow steps 1 and 2 and click Export to
Disk, which opens this window.

Choose where you want to save the file in the Save in field and specify the name of the
MAT-file in the File name field. Click Save to save the file.

• Close

Use Close to close the SISO Design Tool. This closes all components of the SISO
Design Tool.

Edit Menu Options
Undo
Redo
SISO Tool Preferences

• Undo

Use Undo to go back in design steps. Note that the Undo menu changes when the
task you have just performed changes. For example, if you change the compensator
gain, the Undo menu item now reads Undo Edit Gain.

• Redo

Use Redo to go forward in the design steps. You can only use Redo if you have
previously used Undo. Like the Undo menu, the Redo menu changes when the task
you have just performed changes. For example, if you change the compensator gain,
and then select Undo Edit Gain, the Redo menu item becomes Redo Edit Gain.

• SISO Tool Preferences

 Using the SISO Design Task Node

17-9

Select SISO Tool Preferences from the Edit menu to open the SISO Tool
Preferences dialog box.

You can use this window to do the following:

• Change units
• Add plot grids, change font styles for titles, labels, etc., and change axes

foreground colors
• Change the compensator format
• Show or hide system poles and zeros in Bode diagrams

For a discussion of this window's features, see Setting Toolbox Preferences" online in
the Control System Toolbox documentation.

Help

Selecting About the Control and Estimation Tools Manager in the Help menu
opens a window with the version number and a copyright notice for this product.

Buttons Available from Any Pane

• “Showing the Control Architecture” on page 17-10
• “Store Design” on page 17-10

17 SISO Design Tool

17-10

Showing the Control Architecture

Click Show Architecture to open a window that displays the block diagram for your
model. For example,

Below the block diagram is a table that shows the default names for each part of the
block diagram and the assigned name, if you have one.

Store Design

Click Store Design to save your design to your SISO Design Task node. Click on Design
under the node to see a snapshot summary of your design. Click on the Design History
node to show a list of all stored designs.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-11

Using the SISO Design Task in the Controls & Estimation Tools
Manager

In this section...

“Architecture” on page 17-11
“Compensator Editor” on page 17-18
“Graphical Tuning” on page 17-19
“Analysis Plots” on page 17-22
“Automated Tuning” on page 17-24

Architecture

Use the Architecture tab for:

• “Block Diagram Structure Modifications” on page 17-12
• “Loop Configuration” on page 17-13
• “Model Import” on page 17-14
• “Sample Times for Continuous/Discrete Conversions” on page 17-16
• “Multimodel Configuration” on page 17-17

Architecture Pane on the SISO Design Task Node

17 SISO Design Tool

17-12

Block Diagram Structure Modifications

Click Control Architecture to change the feedback structure and label signals and
blocks. The following pane appears:

Select a

control

architecture.

Select an architecture from the list of block configurations. These include compensator in
the forward path, compensator in the feedback path, feedforward controller, and various
multi-loop configurations. The window automatically updates to show the selected
configuration.

Each configuration has associated Signs and Blocks and Signals panes. This figure shows
the Signs pane.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-13

Use menu to toggle
between + and - for
feedback signals
at summing junction.

The Blocks and Signals pane displays the generic identifier, for example F for the
prefilter block, and a default name.

Double-click to
change name.

On the Signs pane,
use the menu to
toggle between.

Loop Configuration

Click Loop Configuration to configure loops for multi-loop design by opening signals to
remove the effects of other feedback loops.

17 SISO Design Tool

17-14

To specify openings for a given open loop, select the loop in the combo box. Click
Highlight Feedback Loop to see the effects of the selected openings.

For an example of how to use this window in design, see Multi-Loop Compensator
Design.

Model Import

Click System Data on the Architecture pane to import models into your system. This
opens the System Data dialog box, shown below.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-15

You can import models for the plant (G), compensator (C), prefilter (F), and/or sensor
(H). G or H or both are LTI models or row or column arrays of LTI models. If both G and
H are arrays, their sizes must match.

To import a model:

1 Select a system in the System column and click Browse. The Model Import dialog
box opens, as shown in the next figure.

17 SISO Design Tool

17-16

2 Select a model from the Available Models list. You can import models from:

• The MATLAB workspace
• A MAT-file

3 Click Import, then click Close. You can now see the model loaded into the system
selected in the System Data dialog.

4 Click OK. The Graphical Tuning window is updated with the model you loaded.

Alternatively, you can import by entering a valid expression or variable (double, LTI
object or row or column array of LTI objects) in the Data column in the System Data
window.

For more information, see “Importing Models into the SISO Design Tool”.

Sample Times for Continuous/Discrete Conversions

Click Sample Time Conversion to convert the sample time of the system or switch
between different sample times to design different compensators.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-17

Choose from Zero-Order Hold, First-Order Hold, Impulse Variant, Tustin, Tustin w/
Prewarping, and Matched Pole-Zero.

For a full description, see “Continuous/Discrete Conversions Using the Sample Time
Conversion Dialog Box” on page 17-47.

Multimodel Configuration

The Multimodel Configuration button is enabled only when you import or open the
SISO Design Tool GUI with a row or column arrays of LTI models for the plant G or
sensor H or both. The LTI arrays model system variations in the plant and sensor. If
both G and H are arrays, their sizes must match.

Click Multimodel Configuration to specify the nominal model and frequency grid
for multimodel computations. This action opens the Multimodel Configuration Dialog
window, as shown in the next figure.

17 SISO Design Tool

17-18

For more information, see “Control Design Analysis of Multiple Models”.

Compensator Editor

Use the Compensator Editor for adding or editing gains, poles, and zeros.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-19

Compensator Editor Pane on the SISO Design Task Node

1 Enter the compensator gain in the text box in the top part of the pane.
2 Add or remove compensator poles and zeros by right-clicking in the Dynamics table.
3 Adjust pole and zero settings by entering values directly in the Edit Selected

Dynamics group box.

Graphical Tuning

Use the Graphical Tuning pane for

• “Configuring Design Plots for the Graphical Tuning Window” on page 17-20
• “Selecting New Loops to Tune” on page 17-22
• “Refocusing on the Graphical Tuning Window” on page 17-22

17 SISO Design Tool

17-20

Graphical Tuning Pane on the SISO Design Task Node

Configuring Design Plots for the Graphical Tuning Window

Click the Graphical Tuning tab to configure design plots displayed in the Graphical
Tuning Window.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-21

In the Graphical Tuning window, use design plots to graphically manipulate system
response. These design plots are dynamically linked to the SISO Design Task. When
you change the dynamics of your compensator in either the SISO Design Task or the
Graphical Tuning window, the design updates in both places.

For open-loop responses, the available plot types are:

• Root locus
• Nichols
• Bode

For closed-loop responses, the available plot type is Bode.

For row or column arrays of LTI models, the design plots show the individual response
of all models in the array by default. For more information, see “Using the Graphical
Tuning Window” in the Getting Started Guide.

17 SISO Design Tool

17-22

Selecting New Loops to Tune

Click Select New Open/Closed Loops to Tune to open a window for specifying new
loops to tune.

Use the pull down menus to select the desired closed loop to tune by specifying the input,
output, and blocks for tuning. Using the dialog box, you can select additional closed loops
to tune.

Any loop you specify is displayed in the Summary of Available Loops to Tune in the
Graphical Tuning pane. The list is also available in the Design plots configuration
table of the same pane. You can use the latter for configuring design plots.

Refocusing on the Graphical Tuning Window

Click Show Design Plot to change the focus to the Graphical Tuning window.

Analysis Plots

Use the Analysis Plots pane for

• “Customizing Loop Responses” on page 17-23

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-23

• “Adding New Response Plots” on page 17-24
• “Opening or Changing the Focus to the Linear System Analyzer” on page 17-24

Analysis Plots Pane on the SISO Design Task Node

Customizing Loop Responses

The following sections describe the main components of the Analysis Plots pane.

Analysis Plots

You can have up to six plots in one Linear System Analyzer. To add a plot, start by
selecting "Plot 1" from the list of plots. Then select a new plot type from the pull down
menu. You can choose any of the plots available in the Linear System Analyzer. Select
"None" to remove a plot.

Contents of plots

Once you have selected a plot type, you can include several open- and closed-loop
transfer function responses for display. You can plot open-loop responses for each of the
components of your system, including your compensator (C), plant (G), prefilter (F), or
sensor (H). In addition, various closed loop and sensitivity response plots are available.

17 SISO Design Tool

17-24

For row or column arrays of LTI models, the analysis plots show the response of the
nominal model only by default. For more information, see “Analysis Plots for Loop
Responses” in the Getting Started Guide.

Adding New Response Plots

Click Add Responses to open a window with three drop-down menus for selecting open
and closed loop responses for various input and output nodes in the control architecture
block diagram. This allows you to select additional responses for viewing. The Response
table updates automatically to include the selected response.

Opening or Changing the Focus to the Linear System Analyzer

Click Show Analysis Plot to open a new Linear System Analyzer for SISO Design with
the response plots that you selected. All the plots open in one instance of the Linear
System Analyzer.

Automated Tuning

Use the Automated Tuning pane to select a method for automatic tuning of your
compensator design. Automated tuning methods help you design an initial compensator
for a SISO loop that satisfies your design specifications.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-25

You can choose among the following design methods:

• “Optimization-Based Tuning” on page 17-27 — Optimize compensator parameters
using design requirements implemented in graphical tuning and analysis plots

• “PID Tuning” on page 17-28 — Tune PID controller parameters using the Robust
response time tuning algorithm or classic tuning formulas

• “Internal Model Control (IMC) Tuning” on page 17-34 — Obtain a full-order
stabilizing feedback controller using the IMC design method

• “LQG Synthesis” on page 17-35 — Design a full-order stabilizing feedback
controller as a Linear-Quadratic-Gaussian (LQG) tracker

• “Loop Shaping” on page 17-37 — Find a full-order stabilizing feedback controller
with a desired open loop bandwidth or shape

After you select a design method, the pane updates to display the corresponding options.

17 SISO Design Tool

17-26

Note If the particular design method you are using does not apply or fails, try selecting
different tuning specifications or switch to a different design method.

Stability of an Effective Plant for Automated Tuning

Knowing the stability of the effective plant in your model may help you understand
which automated tuning methods work for your model. Some of the automated tuning

methods only apply to compensators whose open loops (L C P=

Ÿ

) have stable effective

plants (P

Ÿ

).

An effective plant is the system controlled by the compensator you design and contains
all elements of the open loop in your model other than this compensator. The following
figure shows two examples of effective plants.

C P

Effective plant
containing a plant
and a feedback loop

C1

Effective plant containing
a plant, a controller, and
a two feedback loops

C2 P

H

H2

H1

Generic Work Flow

For each method, follow these steps to do your design:

1 Select an automated tuning algorithm from the Design method drop-down menu.
2 If you select Optimization-Based Tuning, stop here and see “Optimization-Based

Tuning” on page 17-27.
3 Select a compensator from the drop-down menu.
4 Determine how you want the compensator to perform and set the tuning

specifications.
5 Click Update Compensator and notice the changes in the associated design and

analysis plots.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-27

Note: If you encounter a disabled Update Compensator button, try selecting
different tuning specifications (Step 4) or switch to a different tuning algorithm (Step
1). The disabled button means that the current method does not work for your model.

Optimization-Based Tuning

Optimization-based tuning is available only if you have Simulink Design Optimization
software installed. You can use this method to either:

• Directly tune response signals within Simulink models.
• Tune responses of LTI systems using a SISO Design Task.

See “Frequency Domain Response Optimization Example” in the Simulink Design
Optimization documentation for more details.

17 SISO Design Tool

17-28

PID Tuning

PID (proportional-integral-derivative) control is the most popular control technique used
in modern industry.

To use automatic PID tuning, select PID Tuning from the Automated Tuning pane of
the Control and Estimation Tools Manager. In most cases, the PID controllers resulting
from PID tuning provide acceptable performance. Use the “Analysis Plots” on page
17-22 to verify design results.

Types of PID Controllers

SISO Design Tool provides automated tuning for the following PID controller types.

• P — Proportional-only control
• I — Integral-only control (available only for the Robust response time tuning

method)

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-29

• PI — Proportional-integral control
• PD — Proportional-derivative control (available only for the Robust response

time tuning method)
• PDF — Proportional-derivative control with a low-pass filter on the derivative term

(available only for the Robust response time tuning method)
• PID — Proportional-integral-derivative control
• PIDF — Proportional-integral-derivative control with a low-pass filter on the

derivative term

PID Tuning Methods

SISO Design Tool provides a Robust response time algorithm for interactive tuning, as
well as six well-known classical tuning methods.

Robust response time. This method computes PID parameters to robustly stabilize
your system based on the bandwidth and phase margin that you specify. Using the
robust response time method you can:

• Tune interactively, adjusting bandwidth and phase margin to achieve your desired
balance between performance and robustness

• Tune any type of PID controller (P, I, PI, PD, PDF, PID, or PIDF)
• Tune all PID parameters, including the derivative filter
• Design for plants that are stable, unstable, or integrating

Classical design formulas. SISO Design Tool includes the following well-known PID
design formulas:

• Approximate MIGO frequency response — Closed-loop frequency-domain
approximate M-constrained integral gain approximation (see [1], Section 7.5).

• Approximate MIGO step response — Open-loop time-domain approximate M-
constrained integral gain approximation (see [1], Sections 7.3–7.4).

• Chien-Hrones-Reswick — Approximates the plant as a first-order model with a
time delay and computes PID parameters using a Chien-Hrones-Reswick look-up
table for zero overshoot and disturbance rejection (see [1], Section 6.2).

• Skogestad IMC — Approximates the plant as a first-order model with a time delay
and computes PID parameters using Skogestad design rules (see [2]).

(This method is different from selecting “Internal Model Control (IMC) Tuning” on
page 17-34 as the full-order compensator tuning method).

17 SISO Design Tool

17-30

• Ziegler-Nichols frequency response — Computes controller parameters
from a Ziegler-Nichols lookup table, based on the ultimate gain and frequency of the
system (see [1], Section 6.2).

• Ziegler-Nichols step response — Approximates the plant as a first-order
model with a time delay that and computes PID parameters using the Ziegler-Nichols
design method (see [1], Section 6.2).

The classical design formulas:

• Require a stable or integrating plant.
• Can design for P, PI, PID, or PID with derivative filter.
• Cannot tune the derivative filter. If you select PID with derivative filter, classical

design formulas set the filter time constant to Td/10, where Td is the tuned derivative
time.

Automated Tuning using the Robust Response Time Method

To use the robust response time tuning method:

1 Select Robust response time from the Tuning method menu.

2 Choose a controller type by clicking the corresponding radio button. To include a
first-order filter on the derivative action for PD or PID controller type, check the
Design with first order derivative filter checkbox.

Note: If you are tuning a PID Controller block in a Simulink model and your block
is type P, I, or PI, select the same controller type as the block. If your block is type

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-31

PD or PID, select the corresponding button and check the Design with first order
derivative filter checkbox.

3 Click Update Compensator to design a controller of the selected type.

By default, the SISO Design Tool automatically computes controller parameters for
balanced performance and robustness.

4 Analyze the response using the analysis plots you select on the Analysis Plots pane.
5 To design a controller interactively, select Interactive (adjustable

performance and robustness) from the Design mode menu. This selection
activates the Bandwidth and Phase Margin sliders.

Adjust the bandwidth and phase margin to achieve your desired controller
performance. For example:

• Increase the bandwidth for a more aggressive controller.

17 SISO Design Tool

17-32

• Increase the phase margin to reduce overshoot.

You can adjust the bandwidth and phase margin values by:

• Moving the sliders
• Entering values in the text field
• Incrementally adjusting the values in the text field using the up and down

arrows.

To increase or decrease the bandwidth by a factor of 10, click the right or left double
arrows, respectively.

Note: Click the Reset bandwidth and phase margin button at any time to return
the sliders to the bandwidth and phase margin of the default compensator design for
your plant.

6 Click Update Compensator again. SISO Design Tool computes new controller
parameters for the specified target bandwidth and phase margin. Repeat steps 4-6 as
necessary to achieve your desired performance.

Note: SISO Design Tool displays the tuned compensator in zpk form in the
Compensator section of the Automated Tuning Pane. To convert the compensator to
parallel or standard PID form, export the compensator to the MATLAB workspace, as
described in “SISO Design Task Node Menu Bar” on page 17-4. Then use the pid or
pidstd commands to convert the exported compensator to parallel or standard PID
parameters, respectively.

Automated Tuning using Classical Design Formulas

To use one of the classical design formulas:

1 Select Classical design formulas from the Tuning method menu.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-33

2 Select a controller type (P, PI, PID, or PID with derivative filter) by clicking the
corresponding radio button.

Note: If you are tuning a PID Controller block in a Simulink model and your block
is type P or PI, select the same controller type as the block. If your block is type PID,
select PID with derivative filter. If your block is type PD or I, use the Robust
response time tuning method.

3 Select the classical design formula you want to use from the Formula menu.

4 Click the Update Compensator button to design a controller using the selected
formula.

17 SISO Design Tool

17-34

Note: SISO Design Tool displays the tuned compensator in zpk form in the
Compensator section of the Automated Tuning Pane. To convert the compensator to
parallel or standard PID form, export the compensator to the MATLAB workspace, as
described in “SISO Design Task Node Menu Bar” on page 17-4. Then use the pid or
pidstd commands to convert the exported compensator to parallel or standard PID
parameters, respectively.

References

[1] Åström, K. J. and Hägglund, T. Advanced PID Control, Research Triangle Park, NC:
Instrumentation, Systems, and Automation Society, 2006.

[2] Skogestad, S., “Simple analytic rules for model reduction and PID controller tuning.”
Journal of Process Control, Vol. 13, No. 4, 2003, pp. 291–309.

Internal Model Control (IMC) Tuning

IMC design generates a full-order feedback controller that guarantees closed-loop
stability when there is no model error. It also contains an integrator, which guarantees
zero steady-state offset for plants without a free differentiator. You can use this tuning
method for both stable and unstable plants.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-35

To design an IMC controller:

1 Specify a value in the Dominant closed-loop time constant field. The initial
value is set as 5% of the open-loop settling time. In general, increasing this value
slows down the closed system and makes it more robust.

2 Specify a value in the Desired controller order field using the slider. After you
obtain a full-order feedback controller, you can try to reduce its order. You may lose
performance and closed-loop stability if you reduce the order.

3 Click Update Compensator.

LQG Synthesis

LQG tracker design generates a full-order feedback controller that guarantees closed-
loop stability. It also contains an integrator, which guarantees zero steady-state error for
plants without a free differentiator.

17 SISO Design Tool

17-36

To design an LQG controller:

1 Specify your preference for controller response using the Controller response
slider.

• Move the slider to the left for aggressive control response.

This means that large overshoot is more heavily penalized so that the controller
acts more aggressively. If you believe your model is accurate and that the
manipulated variable has a large enough range, an aggressive controller is more
desirable.

• Move the slider to the right for robust control response.
2 Specify your estimation of the level of measurement noise using the Measurement

noise slider.

• Move the slider to the left for small measurement noise.

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-37

This means that you expect low noise from the process output measurement.
Because this measurement is used by the Kalman estimator, process
disturbances are picked up more accurately by the estimated states. In this case,
the controller is freer from robustness considerations.

• Move the slider to the right for large measurement noise. This results in a
controller that is more robust to measurement noise.

3 Specify your preference for controller order using the Desired controller order
slider.

4 Click Update Compensator.

Loop Shaping

Loop shaping generates a stabilizing feedback controller to match as closely as possible
to a desired loop shape. You can specify this loop shape as a bandwidth or an open loop
frequency response. If you have Robust Control Toolbox software installed, you can use
loop shaping for SISO systems. For more information see the section on H-Infinity Loop
Shaping in the Robust Control Toolbox User's Guide.

To design a controller using loop shaping:

1 Select a tuning preference by clicking one of these option buttons:

• Target bandwidth — Allows you to specify a target loop shape bandwidth (wb).

This results in a loop shape of your specified bandwidth over an integrator (wb

s
).

• Target loop shape — Allows you to specify the target open loop shape in one of
the following representations: state-space, zero-pole-gain, or transfer functions.

2 Set the tuning options available for your selected tuning preference as follows:

• If you chose Target bandwidth, specify the desired Target open-loop
bandwidth in the editable box.

17 SISO Design Tool

17-38

• If you chose Target loop shape, do the following:

• Enter the desired Target open-loop shape (LTI).

This can be a state-space representation, a zero-pole-gain representation, or a
transfer function.

• Enter the desired Frequency range for loop shaping [wmin,wmax].

 Using the SISO Design Task in the Controls & Estimation Tools Manager

17-39

3 Specify your preference for controller order using the Desired controller order
slider.

4 Click Update Compensator.

17 SISO Design Tool

17-40

SISO Design Task Graphical Tuning Window

The following figure shows the Graphical Tuning window and introduces some
terminology.

Graphical Tuning Window

Bode and Nichols plots in the graphical tuning window automatically display the
following information:

• Gain margin and the -180 degree phase crossing frequency where it is measured
• Phase margin and the 0 dB gain crossing frequency where it is measured
• Whether the characteristic equation 1+L is stable (Stable loop) or unstable

(Unstable loop). L is the open loop plotted in the figure.

 SISO Design Task Graphical Tuning Window

17-41

For row or column arrays of LTI models, the plots display the characteristics of the
nominal model only.

The following topics describe the Graphical Tuning window features:

• “Using the Graphical Tuning Window Menu Bar” on page 17-42
• “Using the Graphical Tuning Window Toolbar” on page 17-53
• “Using the Right-Click Menus in the Graphical Tuning Window” on page 17-54

17 SISO Design Tool

17-42

Using the Graphical Tuning Window Menu Bar

In this section...

“Overview of the Graphical Tuning Window Menu Bar” on page 17-42
“File” on page 17-42
“Edit” on page 17-45
“View” on page 17-45
“Analysis” on page 17-46
“Tools” on page 17-47
“Window” on page 17-51
“Help” on page 17-51

Overview of the Graphical Tuning Window Menu Bar

Several of the tasks you can do in the SISO Design Tool can be done from the menu bar,
shown below.

File

Using the File menu, you can:

• Import and export models

 Using the Graphical Tuning Window Menu Bar

17-43

• Save and reload sessions
• Set toolbox preferences
• Print and print to figure
• Close the Graphical Tuning Window

The following sections describe the File menu options in turn.

Import

Selecting Import opens the same System Data dialog box that clicking System Data on
the Architecture pane does. See “Model Import” on page 17-14.

Export

Selecting Export from the Graphical Tuning window File menu opens the same SISO
Tool Export window that selecting Export from the SISO Design Task node File menu
does. See Export.

Save Session

Selecting Save Session from the Graphical Tuning window File menu opens the same
Save Projects window that selecting Save from the SISO Design Task node File menu
does. See Save.

Load Session

To load a saved SISO Design Tool session, select Load Session from the File menu.
This opens the Load Session dialog.

17 SISO Design Tool

17-44

Sessions are saved as MAT-files. Select the session you want to load from the list,
and click Open. See “Save Session” on page 17-43 for information on saving SISO
Design Tool sessions.

Toolbox Preferences

Select Toolbox Preferences from the File menu to open the Control System Toolbox
Preferences window.

The Control System Toolbox Preferences Window

For a discussion of this window's features, see "Setting Toolbox Preferences" online in the
Control System Toolbox documentation.

Print

Use Print to send a picture of the Graphical Tuning window to your printer.

Print to Figure

Print to Figure opens a separate figure window containing the design views in your
current Graphical Tuning window.

Close

Use Close to close the Graphical Tuning window.

 Using the Graphical Tuning Window Menu Bar

17-45

Edit

Undo and Redo

Selecting Undo and Redo perform the same actions as selecting Undo and Redo
from the SISO Design Task Node Edit menu. See “Edit Menu Options” on page
17-8.

Tuned Parameters

Selecting Tuned Parameters opens the SISO Tool Preferences dialog box on the
Options page.

SISO Tool Preferences

Selecting the SISO Tool Preferences option opens the same dialog box that selecting
SISO Tool Preferences from the Edit menu on the SISO Design Task Node. See “Edit
Menu Options” on page 17-8.

View

Design Plots Configuration

Select Design Plots Configuration to open the Graphical Tuning pane. See “Graphical
Tuning” on page 17-19.

Closed-Loop Poles

Select Closed-Loop Poles from View to open the Closed-Loop Pole Viewer.

17 SISO Design Tool

17-46

This window displays all the closed-loop pole values of the selected feedback loop and the
associated damping and frequency values.

Design History

Select Design History from the View menu to open the Design History window,
which displays all the actions you've performed during a design session. You can save the
history to an ASCII flat text file by clicking Save to Text File.

Analysis

Common Response Plots

Each of the top group of items in the Analysis menu opens a Linear System Analyzer
that is dynamically linked to your SISO Design Tool. You have the following response
plot choices:

 Using the Graphical Tuning Window Menu Bar

17-47

• Response to Step Command — The closed-loop step response of your system
• Rejection of Step Disturbance — The open-loop step response of your system
• Closed-Loop Bode — The closed-loop Bode diagram for your system
• Compensator Bode — The open-loop Bode diagram for your compensator
• Open-Loop Nyquist — The open-loop Nyquist plot for your system

When you make changes to the design via the Graphical Tuning window, the
Compensator Editor pane, or the Automated Tuning pane, the response plots in the
Linear System Analyzer automatically change to reflect the new design's responses.

Other Loop Responses

If you choose Other Loop Responses, the Analysis Plots pane opens. See “Analysis
Plots” on page 17-22.

Tools

Continuous/Discrete Conversions Using the Sample Time Conversion Dialog Box

• “Converting Continuous-Time Models to Discrete-Time Models” on page 17-47
• “Converting Discrete-Time Models to Continuous-Time” on page 17-48
• “Changing the Sample Time of a Discrete-Time Model” on page 17-49

Converting Continuous-Time Models to Discrete-Time Models

To convert a continuous-time model to a discrete-time model, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete Conversions to
open the Sample Time Conversion window.

17 SISO Design Tool

17-48

2 Specify a positive number for the sample time in the Sample time (sec) field.
3 Select a continuous-to-discrete conversion method for each component of your model.

The components include the plant (G), the compensator (C), the prefilter (F), or the
sensor (H). You can choose from the following conversion methods:

• Zero-order hold
• First-order hold
• Tustin
• Tustin with prewarping

Note: If you choose Tustin with prewarping, you must specify the critical
frequency in radians per second.

• Matched pole/zero

For more information on each of these conversion methods, see “Continuous-Discrete
Conversion Methods” in the Control System Toolbox documentation.

Converting Discrete-Time Models to Continuous-Time

To convert a discrete-time model to a continuous-time model, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete Conversions to
open the Sample Time Conversion window.

 Using the Graphical Tuning Window Menu Bar

17-49

2 Select a discrete-to-continuous conversion method for each component of your model.
The components include the plant (G), the compensator (C), the prefilter (F), or the
sensor (H). You can choose from the following conversion methods:

• Zero-order hold
• First-order hold
• Tustin
• Tustin with prewarping

Note: If you choose Tustin with prewarping, you must specify the critical
frequency in radians per second.

• Matched pole/zero

For more information on each of these conversion methods, see “Continuous-Discrete
Conversion Methods” in the Control System Toolbox documentation.

Changing the Sample Time of a Discrete-Time Model

To change the sample time of (resample) a discrete system, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete Conversions to
open the Sample Time Conversion window.

2 Click the Discrete time with new sample time option button.

17 SISO Design Tool

17-50

3 Specify a positive number for the sample time in the Sample time (sec) field.

Draw Simulink Diagram

Note You must have a license for Simulink to use this feature. If you do not have
Simulink, this option does not appear under the Tools menu.

Select Draw Simulink Diagram from the Tools menu to draw a block diagram of your
system (plant, compensator, prefilter, and sensor). The following diagram shows how the
tool would render the DC motor example described in the Control System Toolbox Getting
Started Guide.

 Using the Graphical Tuning Window Menu Bar

17-51

Automated Tuning

Select Automated Tuning from the Tools menu in the SISO Design Tool to open the
Automated Tuning tab of the Control and Estimation Tools Manager. You can use this
tab to perform automated tuning of compensators. For more information, see “Automated
Tuning Design”.

Window

The Window menu item lists all of the windows open in the MATLAB technical
computing environment. The first item is always the MATLAB Command Window. After
that, the windows you have opened are listed in the order in which you opened them.
Select any window from the list to make it the active window.

Help

Help brings you to various places in the Control System Toolbox help system. This figure
shows the menu.

Each topics takes you to brief discussions of basic information about the SISO Design
Tool and the Control System Toolbox software:

• SISO Design Tool Help — An overview of the SISO Design Tool
• Control System Toolbox Help — A roadmap for the Control System Toolbox help
• What's This? — Activates the "What's This?" cursor, which appears as a question

mark. Click in various regions of the SISO Design Tool to see brief descriptions of the
tool's features.

17 SISO Design Tool

17-52

• Importing/Exporting Models — How to import models into the SISO Design Tool
and how to export completed designs

• Tuning Compensators — Basic information about adjusting gains and adding
dynamics to your prefilter (F) and compensator (C)

• Viewing Loop Responses — How to open a Linear System Analyzer containing loop
responses for your system. Many response types are available.

• Viewing System Data — How to see information about your model
• Storing/Retrieving Designs — How to store and retrieve designed systems
• Customizing the SISO Tool — How to open the SISO Tool Preferences editor,

which allows you to customize plot displays in the tool
• Examples — A link to Control System Toolbox featured examples
• About the Control System Toolbox software — The version number of your

Control System Toolbox software

 Using the Graphical Tuning Window Toolbar

17-53

Using the Graphical Tuning Window Toolbar

The toolbar performs the following operations:

• Add and delete real and complex poles and zeros
• Zoom in and out
• Invoke the SISO Design Tool's context-sensitive help

This picture shows the toolbar.

Options Available from the Toolbar

You can use the tool tips feature to find out what a particular icon does. Just place your
mouse over the icon in question, and you will see a brief description of what it does.

Once you've selected an icon, your mouse stays in that mode until you press the icon
again.

You can reach all of these options from the right-click menus.

17 SISO Design Tool

17-54

Using the Right-Click Menus in the Graphical Tuning Window

In this section...

“Overview of the Right-Click Menus” on page 17-54
“Add Pole/Zero” on page 17-55
“Delete Pole/Zero” on page 17-58
“Edit Compensator” on page 17-58
“Gain Target” on page 17-58
“Show” on page 17-58
“Multimodel Display” on page 17-59
“Design Requirements” on page 17-59
“Grid” on page 17-71
“Full View” on page 17-71
“Properties” on page 17-71
“Select Compensator” on page 17-72
“Status Pane” on page 17-72

Overview of the Right-Click Menus

The Graphical Tuning window provides right-click menus for all the views available.
These views include the root-locus, open-loop Bode diagrams, Nichols plot, and the
closed-loop Bode diagrams. The menu items in each of these views are identical. The
design requirements, however, differ, depending on which view you are accessing the
menus from.

You can use the right-click menu to design a compensator by adding poles, zeros, lead,
lag, and notch filters. In addition, you can use this menu to add grids and zoom in on
selected regions. Also, you can open each view's Property Editor to customize units and
other elements of the display.

Note: Click items on the menu bar pictured below to get help contents.

 Using the Right-Click Menus in the Graphical Tuning Window

17-55

Open-Loop Right-Click Menu

Note that if you have a closed-loop response, the Gain Target menu item is replaced by
“Select Compensator” on page 17-72.

Add Pole/Zero

The Add Pole/Zero menu options give you the ability to add dynamics to your
compensator design, including poles, zeros, lead and lag networks, and notch filters. The
following pole/zero configurations are available:

• Real Pole
• Complex Pole
• Integrator
• Real Zero
• Complex Zero
• Differentiator
• Lead
• Lag
• Notch

In all but the integrator and differentiator, once you select the configuration, your
cursor changes to an `x'. To add the item to your compensator design, place the x at the
desired location on the plot and left-click your mouse. You will see the root locus design
automatically update to include the new compensator dynamics.

The notch filter has three adjustable parameters. For a discussion about how to add and
adjust notch filters, see "Adding a Notch Filter" in the Control System Toolbox Getting
Started Guide.

17 SISO Design Tool

17-56

Note: For systems with FRD plants, you cannot add or modify poles and zeros outside
the plotted frequency range on Bode and Nichols plots. Instead, you can make such
modifications using the Compensator Editor pane of the Control and Estimation Tools
Manager. For more information, see “Compensator Editor” on page 17-18.

Example: Adding a Complex Pair of Poles

This example shows you how to add a complex pair of poles to the open-loop Bode
diagram. First, type

load ltiexamples

controlSystemDesigner('bode',sys_dc)

at the MATLAB prompt. This opens the SISO Design Tool with the DC motor example
loaded and the open-loop Bode diagram displayed in the Graphical Tuning window.

 Using the Right-Click Menus in the Graphical Tuning Window

17-57

To add a complex pair of poles:

1 Select Add Pole/Zero->Complex Pole from the right-click menu
2 Place the mouse cursor where you want the pole to be located
3 Left-click to add the pole

Your Graphical Tuning window should look similar to this.

In the case of Bode diagrams, when you place a complex pole, the default damping value
is 1, which means you have a double real pole. To change the damping, grab the red `x'
by left-clicking on it and drag it upward with your mouse. You will see damping ratio
change in the Status pane at the bottom of the SISO Design Tool.

17 SISO Design Tool

17-58

Delete Pole/Zero

Select Delete Pole/Zero to delete poles and zeros from your compensator design. When
you make this selection, your cursor changes to an eraser. Place the eraser over the pole
or zero you want to delete and left-click your mouse.

Note the following:

• You can only delete compensator poles and zeros. Plant (G in the feedback structure
pane) poles and zeros cannot be altered.

• If you delete one of a pair of poles or zeros, the other member of the pair is also
removed.

Edit Compensator

Edit Compensator opens the Compensator Editor pane in the SISO Design Task.
You can use this pane to adjust the compensator gain and add or remove compensator
poles and zeros from your compensator (C) or prefilter (F) design. See “Compensator
Editor” on page 17-18 for a discussion of this pane.

Gain Target

This feature is intended for users of the Simulink Control Design software. It is
nonfunctional in the Control System Toolbox software.

Show

Use Show to select/deselect the display of characteristics relevant to which view you are
working with. This figure displays the Show submenu for the open-loop Bode diagram.

For this particular view, the options available are magnitude, phase, and stability
margins. Selecting any of these toggles between showing and hiding the feature. A check

 Using the Right-Click Menus in the Graphical Tuning Window

17-59

next to the feature means that it is currently displayed on the Bode diagram plots.
Although the characteristics are different for each view in the Graphical Tuning window,
they all toggle on and off in the same manner.

Multimodel Display

This menu is enabled only when you import or open the SISO Design Tool with row or
column arrays of LTI models.

Use Multimodel Display to view the responses of models in an LTI array as individual
responses or as an envelope encompassing all responses on the Bode and Nichols plots.

On the Root Locus plot, use this menu to show or hide the pole/zero locations of all
models in the array, except the nominal one.

For more information on control design analysis for multiple models, see “Control Design
Analysis of Multiple Models” in the Getting Started Guide.

Design Requirements

When designing compensators, it is common to have design specifications that call for
specific settling times, damping ratios, and other characteristics. The Graphical Tuning
window provides tools for design requirements that can help make the task of meeting
design specifications easier.

The New Design Requirement dialog box lets you create design requirements by creating
graphical representations for feasible and nonfeasible regions, automatically changes to
reflect which design requirements are available for the view in which you are working.
Select Design Requirements > New to open the New Design Requirement dialog box.

17 SISO Design Tool

17-60

Since each view has a different set of design requirements, click the following links to go
to the appropriate descriptions:

• “Design Requirements for the Root Locus” on page 17-60
• “Design Requirements for Open- and Closed-Loop Bode Diagrams” on page 17-63
• “Design Requirements for Open-Loop Nichols Plots” on page 17-66
• “Linear System Analyzer for SISO Design Task Design Requirements” on page

17-73

For row or column arrays of LTI models, the design requirements are for the nominal
plant that you are designing the controller for. You can analyze the effects of this
controller on the remaining models. See “Control Design Analysis of Multiple Models” in
the Getting Started Guide.

Design Requirements for the Root Locus

For the root locus, you can use the following design requirements:

• “Settling Time” on page 17-60
• “Percent Overshoot” on page 17-60
• “Damping Ratio” on page 17-61
• “Natural Frequency” on page 17-61
• “Region Constraint” on page 17-61

Use the Design requirement type drop-down list to select a design requirement.
In each case, to specify the design requirement, enter the value in the Design
requirement parameters pane. You can select any or all of them, or have more than
one of each.
Settling Time

If you specify a settling time in the continuous-time root locus, a vertical line appears on
the root locus plot at the pole locations associated with the settling time value provided
(using a first-order approximation). This vertical line is exact for a second order system
and is only an approximation for higher order systems. In the discrete-time case, the
design requirement boundary is a curved line.
Percent Overshoot

Specifying percent overshoot in the continuous-time root locus causes two rays, starting
at the root locus origin, to appear. These rays are the locus of poles associated with the

 Using the Right-Click Menus in the Graphical Tuning Window

17-61

percent value (using a second-order approximation). In the discrete-time case, the design
requirement appears as two curves originating at (1,0) and meeting on the real axis in
the left-hand plane.

Note that the percent overshoot (p.o.) design requirement can be expressed in terms of
the damping ratio, as in this equation:

p o. . exp= -
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

100

1 2

pz

z

where ζ is the damping ratio.

Damping Ratio

Specifying a damping ratio in the continuous-time root locus causes two rays, starting
at the root locus origin, to appear. These rays are the locus of poles associated with the
damping ratio. In the discrete-time case, the design requirement boundary appears as
curved lines originating at (1,0) and meeting on the real axis in the left-hand plane.

Natural Frequency

If you specify a natural frequency lower bound, a semicircle centered around the root
locus origin appears. If you specify a natural frequency upper bound, the inverse of this
semicircle appears. The radius equals the natural frequency.

Region Constraint

Specifying a region constraint at given locations causes black lines and a yellow area to
appear. The vertices of this free-form piecewise region are defined by the specified real
and imaginary values.

Example: Adding Damping Ratio Design Requirements

This example adds a damping ratio design requirement of 0.707.

1 At the MATLAB prompt, type the following:

load ltiexamples

controlSystemDesigner(sys_dc)

This opens the SISO Design Tool with the DC motor example imported.

17 SISO Design Tool

17-62

2 From the root locus right-click menu, select Design Requirement > New to open
the New Design Requirement dialog box.

3 To add the design requirement, select Damping Ratio as the design requirement.
Click OK to accept the default damping ratio of 0.707.

The Graphical Tuning window should now look similar to this figure.

Damping Ratio Requirements in the Root Locus

The two rays centered at (0,0) represent the damping ratio boundaries. The dark edge
is the region boundary, and the shaded area outlines the exclusion region. This figure
explains what this means for this design requirement.

 Using the Right-Click Menus in the Graphical Tuning Window

17-63

You can, for example, use this design requirement to ensure that the closed-loop poles,
represented by the red squares, have some minimum damping. Try adjusting the gain
until the damping ratio of the closed-loop poles is 0.7.

Design Requirements for Open- and Closed-Loop Bode Diagrams

For both the open- and closed-loop Bode diagrams, you have the following options:

• “Upper Gain Limit” on page 17-63
• “Lower Gain Limit” on page 17-63
• “Gain and Phase Margin” on page 17-63

Specifying any of these design requirements causes lines to appear in the Bode
magnitude curve. To specify an upper or lower gain limit, enter the frequency range,
the magnitude limit, and/or the slope in decibels per decade, in the appropriate fields
of the New design requirement dialog box. You can have as many gain limit design
requirements as you like in your Bode magnitude plots.
Upper Gain Limit

You can specify one or multiple piecewise linear upper gain limits over a frequency
range, which appear as straight lines on the Bode magnitude curve. You must select
frequency limits, the upper gain limit in decibels, and the slope in dB/decade.
Lower Gain Limit

You can specify one or multiple lower gain limit in the same fashion as the upper gain
limit.
Gain and Phase Margin

You can specify a lower bound for the gain, the phase margin, or both. The specified
bounds appear in text on the Bode magnitude plot.

17 SISO Design Tool

17-64

Example: Adding Upper Gain Limits

This example shows you how to add two upper gain limit requirements to the open-loop
Bode diagram.

1 At the MATLAB prompt, type the following:

load ltiexamples

controlSystemDesigner('bode',Gservo)

This opens the SISO Design Tool with the servomechanism model loaded.
2 Use the right-click menu to add a grid.

3 To add an upper gain limit requirement of 0 dB from 10 rad/sec to 100 rad/sec, open
the New Design Requirement dialog box and select Upper gain limit from the pull-
down menu. Fill in the dialog box fields as shown in the following figure.

 Using the Right-Click Menus in the Graphical Tuning Window

17-65

Your Graphical Tuning window should now look like this (you may have to adjust
some axis limits).

17 SISO Design Tool

17-66

4 To constrain the roll off, open the New Design Requirement dialog box and add an
upper gain limit from 100 rad/sec to 1000 rad/sec with a slope of -20 db/decade. This
figure shows the result.

With these design requirements in place, you can see how much you can increase the
compensator gain and still meet design specifications.

Note that you can change the design requirements by moving them with your mouse. See
“Editing Design Requirements” on page 17-69 for more information.

Design Requirements for Open-Loop Nichols Plots

For open-loop Nichols plots, you have the following design requirement options:

• “Phase Margin” on page 17-67
• “Gain Margin” on page 17-67

 Using the Right-Click Menus in the Graphical Tuning Window

17-67

• “Closed-Loop Peak Gain” on page 17-67
• “Gain-Phase Design Requirement” on page 17-67

Specifying any of these design requirements causes lines or curves to appear in the
Nichols plot. In each case, to specify the design requirement, enter the value in the
Design requirement parameters pane. You can select any or all of them, or have more
than one of each.

Phase Margin

Specify a minimum phase margin at a given location. For example, you can require a
minimum of 30 degrees at the -180 degree crossover. The phase margin specified should
be a number greater than 0. The location must be a -180 plus a multiple of 360 degrees. If
you enter an invalid location point, the closest valid location is selected.

Gain Margin

Specify a gain margin at a given location. For example, you can require a minimum of 20
dB at the -180 degree crossover. The location must be -180 plus a multiple of 360 degrees.
If you enter an invalid location point, the closest valid location is selected.

Closed-Loop Peak Gain

Specify a peak closed-loop gain at a given location. The specified dB value can be positive
or negative. The design requirement follows the curves of the Nichols plot grid, so it is
recommended that you have the grid on when using this feature.

Gain-Phase Design Requirement

Specify both a gain and phase design requirement at a given location. The vertices of this
free-form piecewise region are defined by the specified open-loop phase and open-loop
gain values.

Example: Adding a Closed-Loop Peak Gain Design Requirement

This example shows how to add a closed-loop peak gain design requirement to the
Nichols plot.

1 At the MATLAB prompt, type the following:

load ltiexamples

controlSystemDesigner('nichols',Gservo)

17 SISO Design Tool

17-68

This opens the SISO Design Tool with Gservo imported as the plant.
2 Use the right-click menu to add a grid, as this figure shows.

3 To add closed-loop peak gain of 1 dB at -180 degrees, open the New Design
Requirement dialog box and select Closed-Loop Peak Gain from the pull-down
menu. Set the peak gain field to 1 dB.

The figure shows the resulting design requirement.

 Using the Right-Click Menus in the Graphical Tuning Window

17-69

As long as the curve is outside of the gray region, the closed-loop gain is guaranteed to
be less than 1 dB. Note that this is equivalent, up to second order, to specifying the peak
overshoot in the time domain. In this case, a 1 dB closed-loop peak gain corresponds to an
overshoot of 15%.

Editing Design Requirements

To edit an existing design requirement, left-click on the design requirement boundary
to select it. Two black squares appear on the design requirement when it is selected. In
general, there are two ways to adjust a design requirement:

• Click on the design requirement boundary and drag it. Generally, this does not
change the shape of the boundary. That is, the adjustment is strictly a translation of
the design requirement.

17 SISO Design Tool

17-70

• Grab a black square and drag it. In this case, you can rotate, expand, and/or contract
the design requirement.

For example, in Bode diagrams you can move an upper gain limit by clicking on it and
moving it anywhere in the plot region. As long as you haven't grabbed a black square,
the length and slope of the gain limit will not change as you move the line. On the other
hand, you can change the slope of the upper gain limit by grabbing one of the black
squares and rotating the line. In all cases, the Status pane at the bottom of the Graphical
Tuning window displays the design requirement values as they change.

This figure shows the process of editing an upper gain limit in the open-loop Bode
diagram.

An alternative way to adjust a design requirement is to select Design Requirements-
>Edit from the right-click menu. The Edit Design Requirement window opens.

 Using the Right-Click Menus in the Graphical Tuning Window

17-71

To adjust a design requirement, select the boundary by clicking on it and change the
values in the fields of the Design requirement parameters pane. If you have additional
design requirement in, for example, the Bode diagram, you can edit them directly from
this window by selecting Open-Loop Bode from the Editor menu.

Deleting Design Requirements

To delete a design requirement, place your cursor directly over the design requirement
yellow region. Right-click to open a menu containing Edit and Delete. Select Delete
from the menu list; this eliminates the design requirement. You can also delete design
requirements by left-clicking on a design requirement boundary and then pressing the
BackSpace or Delete key on your keyboard.

Finally, you can delete design requirements by selecting Undo Add Design
Requirement from the Edit menu, or pressing Ctrl+Z if adding design requirements
was the last action you took.

Grid

Grid adds a grid to the selected plot.

Full View

Selecting Full View causes the plot to scale limits so that the entire curve is visible.

Properties

Properties opens the Property Editor, which is a GUI for customizing root locus, Bode
diagrams, and Nichols plots inside the Graphical Tuning window. The Property Editor
automatically reconfigures as you select among the different plots open.

This picture shows the open window for the root locus.

17 SISO Design Tool

17-72

You can use this window to change titles and axis labels, reset axes limits, add grid lines,
and change the aspect ratio of the plot. Note that you can also activate this menu by
double-clicking anywhere in the root locus away from the curve.

The are only three panes in the Property Editor: Labels, Limits, and Options. The
configuration of each page differs, depending on whether you're working with the root-
locus, Bode diagrams, or the open-loop Nichols plot. Click the Help button on the
Property Editor you have open to view information specific to that editor, or click on the
links below:

• Root locus
• Bode diagram
• Nichols plot

Select Compensator

This option allows you to select which compensator to edit for closed-loop Bode response.

Status Pane

The Status pane is located at the bottom of the Graphical Tuning window. It displays the
most recent action you have performed, occasionally provides advice on how to use the
window, and tracks key parameters when moving objects in the design views.

 Linear System Analyzer for SISO Design Task Design Requirements

17-73

Linear System Analyzer for SISO Design Task Design Requirements

In this section...

“Overview of Linear System Analyzer Design Requirements” on page 17-73
“Available Design Requirements in the Linear System Analyzer” on page 17-73
“Example: Time Domain Requirement” on page 17-74

Overview of Linear System Analyzer Design Requirements

You can use the Linear System Analyzer for SISO Design Tasks to specify both time
and frequency domain requirements in analysis plots. Adding and editing design
requirements is similar to those illustrated in the Graphical Tuning window.

Note: To add design requirements, you must open the Linear System Analyzer
from the SISO Design Task in the Control and Estimation Tools Manager. Design
requirements are not available from a Linear System Analyzer that is opened using the
linearSystemAnalyzer command.

For row or column arrays of LTI models, the design requirements are for the nominal
model that you are designing the controller for. You can analyze the effects of this
controller on the remaining models. See “Control Design Analysis of Multiple Models” in
the Getting Started Guide.

Available Design Requirements in the Linear System Analyzer

The design requirements for Bode, Root Locus, and Nichols plots can be applied to both
graphical tuning windows and the Linear System Analyzer. See “Design Requirements”
on page 17-59 for information on graphical tuning design requirements.

You can also specify the following design requirements for both step and impulse
response plots:

• Upper time response bounds — Creates an upper amplitude bound for a specified
time duration.

• Lower time response bounds — Creates a lower amplitude bound for a specified
time duration.

17 SISO Design Tool

17-74

If you are using a step response plot, you can also specify the following design
requirement:

• Step response bounds — Creates a group of upper and lower time response
bounds, in the shape of a step response envelope, to encompass your specified design
requirement parameters.

Example: Time Domain Requirement

This example shows you how to create a lower bound time response design requirement.

1 At the MATLAB prompt, type the following:

load ltiexamples

controlSystemDesigner(Gservo)

2 From the Analysis Plot pane, select a step response for the closed-loop system. See
“Analysis Plots” on page 17-22 if you are unfamiliar with this task.

3 Right-click on the plot and select Design Requirements > New.
4 Select Lower time response bound from the Design requirement type menu.
5 Set Time from 0.1 to 0.5 s.
6 Set Amplitude from 0 to 0.8. Your New Design Requirement window should look like

this.

7 Click OK. This adds the design requirement to the plot. Your step response should
look like this.

 Linear System Analyzer for SISO Design Task Design Requirements

17-75

Now, when you adjust or tune the controller, you can use the plot to observe how well the
response meets your design requirements.

See Also
controlSystemDesigner

Related Examples
• “Getting Started with the SISO Design Tool”

18

Linear System Analyzer

• “Linear System Analyzer Overview” on page 18-2
• “Using the Right-Click Menu in the Linear System Analyzer” on page 18-4
• “Importing, Exporting, and Deleting Models in the Linear System Analyzer” on page

18-12
• “Selecting Response Types” on page 18-15
• “Analyzing MIMO Models” on page 18-20
• “Customizing the Linear System Analyzer” on page 18-26

18 Linear System Analyzer

18-2

Linear System Analyzer Overview
The Linear System Analyzer app simplifies the analysis of linear, time-invariant
systems. Use Linear System Analyzer to view and compare the response plots of SISO
and MIMO systems, or of several linear models at the same time. You can generate time
and frequency response plots to inspect key response parameters, such as rise time,
maximum overshoot, and stability margins.

You can launch the Linear System Analyzer in two ways:

• Use the linearSystemAnalyzer command.
• Create analysis plots or design requirements within SISO Design Tool.

The easiest way to work with the Linear System Analyzer is to use the right-click menus.
For example, type

load ltiexamples

linearSystemAnalyzer(sys_dc)

at the MATLAB prompt. The default plot is a step response.

 Linear System Analyzer Overview

18-3

The Linear System Analyzer can display up to seven different plot types simultaneously,
including step, impulse, Bode (magnitude and phase or magnitude only), Nyquist,
Nichols, sigma, pole/zero, and I/O pole/zero.

For examples of how to use the Linear System Analyzer, see “Linear Analysis Using the
Linear System Analyzer”. For more detailed information about Linear System Analyzer
menus and options, see:

• “Using the Right-Click Menu in the Linear System Analyzer” on page 18-4
• “Importing, Exporting, and Deleting Models in the Linear System Analyzer” on page

18-12
• “Selecting Response Types” on page 18-15
• “Analyzing MIMO Models” on page 18-20
• “Customizing the Linear System Analyzer” on page 18-26

18 Linear System Analyzer

18-4

Using the Right-Click Menu in the Linear System Analyzer

In this section...

“Overview of the Right-Click Menu” on page 18-4
“Setting Characteristics of Response Plots” on page 18-4
“Adding Design Requirements” on page 18-8

Overview of the Right-Click Menu

The quickest way to manipulate views in the Linear System Analyzer is use the right-
click menu. You can access several Linear System Analyzer controls and options,
including:

• Plot Type — Changes the plot type
• Systems — Selects or deselects any of the models loaded in the Linear System

Analyzer
• Characteristics — Displays key response characteristics and parameters
• Grid — Adds grids to your plot
• Properties — Opens the Property Editor, where you can customize plot attributes
• Design Requirements — Opens the New Design Requirement window for adding

step response design requirements to your plot (available only for Linear System
Analyzers linked to the Graphical Tuning window of the SISO Design Tool)

In addition to right-click menus, all response plots include data markers. These allow you
to scan the plot data, identify key data, and determine the source system for a given plot.

Setting Characteristics of Response Plots

The Characteristics menu changes for each plot response type. Characteristics refers to
response plot information, such as peak response, or, in some cases, rise time and settling
time.

The next sections describe the menu items for each of the eight plot types.

Step Response

Step plots the model's response to a step input.

 Using the Right-Click Menu in the Linear System Analyzer

18-5

You can display the following information in the step response:

• Peak Response — The largest deviation from the steady-state value of the step
response

• Settling Time — The time required for the step response to decline and stay at 5% of
its final value

• Rise Time — The time require for the step response to rise from 10% to 90% of its
final value

• Steady-State — The final value for the step response

Note You can change the definitions of settling time and rise time using the
Characteristics pane of the Control System Toolbox editor, the “Linear System
Analyzer Preferences Editor”, or the Property editor.

Impulse Response

Impulse Response plots the model's response to an impulse.

The Linear System Analyzer can display the following information in the impulse
response:

• Peak Response — The maximum positive deviation from the steady-state value of
the impulse response

• Settling Time — The time required for the step response to decline and stay at 5% of
its final value

18 Linear System Analyzer

18-6

Bode Diagram

Bode plots the open-loop Bode phase and magnitude diagrams for the model.

The Linear System Analyzer can display the following information in the Bode diagram:

• Peak Response — The maximum value of the Bode magnitude plot over the
specified region

• Stability Margins (Minimum Crossing) — The minimum phase and gain margins.
The gain margin is defined to the gain (in dB) when the phase first crosses -180°.
The phase margin is the distance, in degrees, of the phase from -180° when the gain
magnitude is 0 dB.

• Stability Margins (All Crossings) — Display all stability margins

Bode Magnitude

Bode Magnitude plots the Bode magnitude diagram for the model.

The Linear System Analyzer can display the following information in the Bode
magnitude diagram:

• Peak Response, which is the maximum value of the Bode magnitude in decibels
(dB), over the specified range of the diagram.

• Stability (Minimum Crossing) — The minimum gain margins. The gain margin is
defined to the gain (in dB) when the phase first crosses -180°.

 Using the Right-Click Menu in the Linear System Analyzer

18-7

• Stability (All Crossings) — Display all gain stability margins

Nyquist Diagrams

Nyquist plots the Nyquist diagram for the model.

The Linear System Analyzer can display the following types of information in the
Nyquist diagram:

• Peak Response — The maximum value of the Nyquist diagram over the specified
region

• Stability (Minimum Crossing) — The minimum gain and phase margins for
the Nyquist diagram. The gain margin is the distance from the origin to the phase
crossover of the Nyquist curve. The phase crossover is where the curve meets the real
axis. The phase margin is the angle subtended by the real axis and the gain crossover
on the circle of radius 1.

• Stability (All Crossings) — Display all gain stability margins

Nichols Charts

Nichols plots the Nichols Chart for the model.

The Linear System Analyzer can display the following types of information in the Nichols
chart:

• Peak Response — The maximum value of the Nichols chart in the plotted region.

18 Linear System Analyzer

18-8

• Stability (Minimum Crossing) — The minimum gain and phase margins for the
Nichols chart.

• Stability (All Crossings) — Display all gain stability margins

Singular Values

Singular Values plots the singular values for the model.

The Linear System Analyzer can display the Peak Response, which is the largest
magnitude of the Singular Values curve over the plotted region.

Pole/Zero and I/O Pole/Zero

Pole/Zero plots the poles and zeros of the model with `x' for poles and `o' for zeros. I/O
Pole/Zero plots the poles and zeros of I/O pairs.

There are no Characteristics available for pole-zero plots.

Adding Design Requirements

If you open a Linear System Analyzer for the Graphical Tuning window of the SISO
Design Tool, you have plots linked to your compensator design. In this environment, the
Linear System Analyzer provides access to design requirements, a set of graphical tools
for creating constraints in your design plots.

In addition to all the design requirements available in the Graphical Tuning window,
the Linear System Analyzer has the step response design requirements described in
“Choosing Step Response Specifications” on page 18-9.

 Using the Right-Click Menu in the Linear System Analyzer

18-9

For more information on adding design requirements to Linear System Analyzer plots,
see “Linear System Analyzer for SISO Design Task Design Requirements”.

Note Design requirements are not available from a Linear System Analyzer that is
opened using the linearSystemAnalyzer command or the Apps tab of the MATLAB
desktop.

Choosing Step Response Specifications

To specify step response characteristics select Design Requirements > New in the
right-click menu. This action opens the New Design Requirements editor. Select step
response bounds from the Design requirement type pull down menu to display the
step response specifications as shown below.

The top three options specify the details of the step input:

• Initial value: input level before the step occurs. This option is grayed out because
LTI systems always have initial value equal to 0.

• Step time: time at which the step takes place. This option is grayed out since LTI
systems always have an initial time equal to 0.

• Final value: input level after the step occurs

The remaining options specify the characteristics of the response signal. Each of the step
response characteristics is described in the figure below.

18 Linear System Analyzer

18-10

• Rise time: The time taken for the response signal to reach a specified percentage
of the step's range. The step's range is the difference between the final and initial
values.

• % Rise: The percentage used in the rise time.
• Settling time: The time taken until the response signal settles within a specified

region around the final value. This settling region is defined as the final step value
plus or minus the specified percentage of the final value.

• % Settling: The percentage used in the settling time.
• % Overshoot: The amount by which the response signal can exceed the final value.

This amount is specified as a percentage of the step's range. The step's range is the
difference between the final and initial values.

• % Undershoot: The amount by which the response signal can undershoot the initial
value. This amount is specified as a percentage of the step's range. The step's range is
the difference between the final and initial values.

Enter values for the response specifications in the Design Requirements editor, based
on the requirements of your model, and then click OK. The constraint edges will now
reflect the constraints specified.

 Using the Right-Click Menu in the Linear System Analyzer

18-11

See Also
linearSystemAnalyzer

Related Examples
• “Joint Time- and Frequency-Domain Analysis”

More About
• “Linear System Analyzer Overview”

18 Linear System Analyzer

18-12

Importing, Exporting, and Deleting Models in the Linear System
Analyzer

In this section...

“Importing Models” on page 18-12
“Exporting Models” on page 18-13
“Deleting Models” on page 18-13

Importing Models

To import models into the Linear System Analyzer, select File > Import. The Import
System Data dialog box opens, as shown below.

Use the Import System Data dialog box to import LTI models into or from the Linear
System Analyzer workspace.

To import a model:

• Click on the desired model in the LTI Browser List. To perform multiple selections:

• Hold the Control key and click on nonadjacent models.
• Hold the Shift key while clicking to select multiple adjacent models.

• Click the OK or Apply Button

 Importing, Exporting, and Deleting Models in the Linear System Analyzer

18-13

Note that the LTI Browser lists only the LTI models in the MATLAB workspace.

Alternatively, you can directly import a model into the Linear System Analyzer using the
linearSystemAnalyzer function, as in

 linearSystemAnalyzer({'step','bode'},modelname)

See the linearSystemAnalyzer reference page for more information.

Exporting Models

Use Export in the File menu to open the Linear System Analyzer Export window,
shown below.

The Linear System Analyzer Export window lists all the models with responses
currently displayed in your Linear System Analyzer. You can export models back to the
MATLAB workspace or to disk.

To export single or multiple models, follow the steps described in the importing models
section above. To save your models to disk in a MAT-file, choose Export to Disk.

Deleting Models

To remove models from the Linear System Analyzer workspace, select Edit > Delete
Systems. The Linear System Analyzer Delete dialog box opens.

18 Linear System Analyzer

18-14

To delete a model:

• Click on the desired model in the Model list. To perform multiple selections:

a Click and drag over several variables in the list.
b Hold the Control key and click on individual variables.
c Hold the Shift key while clicking, to select a range.

Click the Delete button.

See Also
linearSystemAnalyzer

More About
• “Linear System Analyzer Overview”

 Selecting Response Types

18-15

Selecting Response Types

In this section...

“Methods for Selecting Response Types” on page 18-15
“Right Click Menu: Plot Type” on page 18-15
“Plot Configurations Window” on page 18-15
“Line Styles Editor” on page 18-17

Methods for Selecting Response Types

There are two methods for selecting response plots in the Linear System Analyzer:

• Selecting Plot Type from the right-click menus
• Opening the Plot Configurations window

Right Click Menu: Plot Type

If you have a plot open in the Linear System Analyzer, you can switch to any other
response plot available by selecting Plot Type from the right click menu.

To change the response plot, select the new plot type from the Plot Type submenu. The
Linear System Analyzer automatically displays the new response plot.

Plot Configurations Window

The Plot Type feature of the right-click menu works on existing plots, but you can also
add plots to a Linear System Analyzer by using the Plot Configurations window.
By default, the Linear System Analyzer opens with a closed-loop step response. To
reconfigure an open viewer, select Plot Configuration in the Edit menu.

18 Linear System Analyzer

18-16

Use the radio buttons to select the number of plots you want displayed in your Linear
System Analyzer. For each plot, select a response type from the menus located on the
right-hand side of the window.

It's possible to configure a single Linear System Analyzer to contain up to six response
plots.

 Selecting Response Types

18-17

Available response plots include: step, impulse, Bode (magnitude and phase, or
magnitude only), Nyquist, Nichols, sigma, pole/zero maps, and I/O pole/zero maps.

Line Styles Editor

Select Edit > Line Styles to open the Line Styles editor.

18 Linear System Analyzer

18-18

The Line Styles editor is particularly useful when you have multiple systems imported.
You can use it change line colors, add and rearrange markers, and alter line styes (solid,
dashed, and so on).

You can use the Linestyle Preferences window to customize the appearance of the
response plots by specifying:

• The line property used to distinguish different systems, inputs, or outputs
• The order in which these line properties are applied

Each Linear System Analyzer has its own Linestyle Preferences window.

Setting Preferences

You can use the "Distinguish by" matrix (the top half of the window) to specify the line
property that will vary throughout the response plots. You can group multiple plot curves
by systems, inputs, outputs, or channels (individual input/output relationships). Note
that the Line Styles editor uses radio buttons, which means that you can only assign one
property setting for each grouping (system, input, etc.).

 Selecting Response Types

18-19

Ordering Properties

The Order field allows you to change the default property order used when applying the
different line properties. You can reorder the colors, markers, and linestyles (e.g., solid or
dashed).

To change any of the property orders, click the up or down arrow button to the left of the
associated property list to move the selected property up or down in the list.

See Also
linearSystemAnalyzer

Related Examples
• “Joint Time- and Frequency-Domain Analysis”

More About
• “Linear System Analyzer Overview”

18 Linear System Analyzer

18-20

Analyzing MIMO Models

In this section...

“Overview of Analyzing MIMO Models” on page 18-20
“Array Selector” on page 18-21
“I/O Grouping for MIMO Models” on page 18-23
“Selecting I/O Pairs” on page 18-24

Overview of Analyzing MIMO Models

If you import a MIMO system, or an LTI array containing multiple linear models, you
can use special features of the right-click menu to group the response plots by input/
output (I/O) pairs, or select individual plots for display. For example, generate an array
of two random 3-input, 3-output MIMO systems and view them in the Linear System
Analyzer:

sys_mimo=stack(1,rss(3,3,3),rss(3,3,3));

linearSystemAnalyzer(sys_mimo);

A set of 9 plots appears, one from each input to each output, each showing the step
responses of the corresponding I/Os of both models in the array.

 Analyzing MIMO Models

18-21

Array Selector

If you import an LTI model array into the Linear System Analyzer, Array Selector
appears as an option in the right-click menu. Selecting this option opens the Model
Selector for LTI Arrays, shown below.

18 Linear System Analyzer

18-22

You can use this window to include or exclude models within the LTI array using various
criteria.

Arrays

Select the LTI array for model selection using the Arrays list.

Selection Criteria

There are two selection criteria. The default, Index into Dimensions, allows you to
include or exclude specified indices of the LTI Array. Select systems from the Selection
Criterion Setup section of the dialog box. Then, Specify whether to show or hide the
systems using the pull-down menu below the Setup lists.

The second criterion is Bound on Characteristics. Selecting this options causes the
Model Selector to reconfigure. The reconfigured window is shown below

 Analyzing MIMO Models

18-23

Use this option to select systems for inclusion or exclusion in your Linear System
Analyzer based on their time response characteristics. The panel directly above the
buttons describes how to set the inclusion or exclusion criteria based on which selection
criteria you select from the reconfigured Selection Criteria Setup panel.

I/O Grouping for MIMO Models

You can group the plots by inputs, by outputs, or both by selecting I/O Grouping from
the right-click menu, and then selecting Inputs, Outputs, or All.

For example, if you select Outputs, the step plot reconfigures into 3 plots, grouping all
the outputs together on each plot. Each plot now displays the responses from one of the
inputs to all of the MIMO system’s outputs, for all of the models in the array.

18 Linear System Analyzer

18-24

Selecting None returns to the default configuration, where all I/O pairs are displayed
individually.

Selecting I/O Pairs

Another way to organize MIMO system information is to choose I/O Selector from the
right-click menu, which opens the I/O Selector window.

 Analyzing MIMO Models

18-25

This window automatically configures to the number of I/O pairs in your MIMO system.
You can select:

• Any individual plot (only one at a time) by clicking on a button
• Any row or column by clicking on Y(*) or U(*)
• All of the plots by clicking [all]

Using these options, you can inspect individual I/O pairs, or look at particular I/O
channels in detail.

See Also
linearSystemAnalyzer

More About
• “Model Arrays”

18 Linear System Analyzer

18-26

Customizing the Linear System Analyzer

In this section...

“Overview of Customizing the Linear System Analyzer” on page 18-26
“Linear System Analyzer Preferences Editor” on page 18-26

Overview of Customizing the Linear System Analyzer

The Linear System Analyzer has a tool preferences editor, which allows you to set
default characteristics for specific instances of Linear System Analyzers. If you open
a new instance of either, each defaults to the characteristics specified in the Toolbox
Preferences editor.

Linear System Analyzer Preferences Editor

Select Edit > Linear System Analyzer Preferences to open the preferences editor.

The Linear System Analyzer Preferences editor contains four panes:

• Units--Convert between various units, including rad/sec and Hertz
• Style--Customize grids, fonts, and colors

 Customizing the Linear System Analyzer

18-27

• Characteristics--Specify response plot characteristics, such as settling time tolerance
• Parameters--Set time and frequency ranges, stop times, and time step size

For more information about using the options in these panes in an instance of the Linear
System Analyzer, see “Linear System Analyzer Preferences Editor”.

If you want to customize the settings for all instances of Linear System Analyzers, see
the Toolbox Preferences editor.

See Also
linearSystemAnalyzer

More About
• “Linear System Analyzer Overview”

